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Abstract: Artificial intelligence (Al) enabled systems for military use on the battlefield must be able to self-adapt to a variety of
domains without requiring extensive re-training, especially in resource-constrained and communication-limited environments.
This paper proffers a neuro-symbolic Al-enabled system capable of self-adapting to domain shifts at inference time. We conduct
unsupervised object detection on simulated overhead drone imagery to eliminate reliance on any ground-truth labels, as well
as incorporate multi-modal language models to proportionally merge multiple domain-specific models when inferencing. In
conducting multi-domain testing, our system’s proportionally merged model outperforms single-domain models. While further
work in the space is necessary, we contribute a feasible means of maintaining system performance in multi-domain scenarios.
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1. Introduction

The United States military must develop a decisive advantage over its adversaries in artificial intelligence (Al) tech-
nological advancement and operational integration. Modern Al-enabled systems fail to maintain performance across multiple
domains, struggling to adapt when environmental conditions (e.g., weather) change, for example, due to their reliance on large,
labeled datasets and frequent re-training requirements (Rawat, 2022). This brittleness is particularly problematic in battlefield
environments, where operational effectiveness depends on Al-enabled systems that can dynamically adjust to new domains.

To mitigate this challenge, Unsupervised Domain Adaptation (UDA) aims to improve Al model generalization across
diverse operating environments without requiring labeled target domain data. A domain shift is considered as when environ-
mental conditions change. In theory, UDA should enable machine learning based Al models for objective detection to function
reliably even when the domain shifts. In practice, however, existing UDA approaches are inadequate, as they struggle to self-
adapt and fail when assumptions about domain similarity break down (Shamitha & Ilango, 2024). Without mechanisms to
actively “reason” about shifting environments, these Al models suffer near immediate performance degradation, limiting their
applicability to real-world military aerial reconnaissance tasks, for example.

To overcome these limitations, we proffer a neuro-symbolic AI (NSAI) enabled system capable of self-adapting to do-
main shifts at inference time, which enhances UDA for object detection by combining symbolic reasoning with model merging.
Specifically, our self-adaptive NSAI-enabled system leverages:

1. A novel methodology that integrates a deep neural network (DNN) with multi-modal language models, a vision language
model (VLM) and large language model (LLM), to infer symbolic representations within an image, and

2. A weighted magnitude selection algorithm for model merging that fuses learned information about separate domains.

Our novel UDA for object detection approach enables continuous self-adaptation to new environmental conditions
without re-training or human supervision. We demonstrate the NSAI-enabled system’s effectiveness on simulated overhead
drone imagery, showing its potential as an application for military aerial reconnaissance in multi-domain battlefield settings.
This gives the warfighter access to an Al system that remains reliable as weather and terrain rapidly shift in combat operations.
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2. Literature Review

UDA attempts to help Al models adapt to new domains without labeled target domain data, but current approaches fail
to deliver reliable performance in real-world settings. Self-adaptation is a critical component of any model deployed on the future
battlefield as frequent re-training and labeled data are unrealistic to have access to. Adversarial learning methods, such as Joint
Adversarial Domain Adaptation and Adversarial Discriminative Domain Adaptation, work by aligning distributions between
domains with adversarial loss functions. However, these methods often break down due to unstable training and sensitivity to
hyper-parameters, ultimately failing when domain shifts are too severe (Li et al., 2019; Tzeng, Hoffman, Saenko, & Darrell,
2017). Hybrid approaches, such as two-stage adaptation frameworks, combine different techniques to improve self-adaptation
but are often so complex resulting in inconsistent performance (Yu, Zhai, & Zhang, 2022). Optimal transport-based approaches,
like Robust Deep Adaptation via Optimal Transport, aim to bridge domain gaps by capturing local feature structures but are
limited by high computational costs and poor scalability (Gilo, Mathew, Mondal, & Sanodiya, 2023).

Many UDA methods for object detection are built on the assumption that domain shifts will be gradual and predictable.
In practice, however, environments do not reflect this assumption, particularly in military battlefield settings, leading to system
feature alignments failing to maintain across domains (Zhang & Zhang, 2022). Additionally, current UDA methods lack the
ability to self-adapt at the point of model inference. As such, there is need for a fundamentally different approach. NSAI presents
the opportunity to combine the strengths of traditional, non-symbolic DNNs with AI models for symbolic reasoning (Jalaian &
Bastian, 2023). A system with symbolic reasoning incorporated allows for auto-adjustment of its predictions in real-time. Still,
many current NSAl-enabled systems are computationally inefficient, thus limiting their operability in real-world environments.

In the context of UDA for object detection, only using pure NSAI for self-adaptation may still experience computational
inefficiency. Thus, model merging allows for the continual learning necessary in an NSAlI-enabled system but eliminates the
requirement of any retraining. Some techniques, such as task arithmetic and simple weight averaging, resolve conflicts between
conflicting model parameters but require a more proportional way to merge. Alternative merging approaches, such as MagMax,
enable continual learning, making them well-suited for environments where self-adaptation is critical (Marczak, Twardowski,
Trzcinski, & Cygert, 2024). Our approach builds on this effort to prevent Al models forgetting previously learned patterns.

3. Methodology

Our solution approach starts by estimating the number of objects in each image, generating rough outlines, training
models for each environment, and finally merging them using insight from language models to improve multi-domain perfor-
mance. This novel methodology integrates symbolic reasoning (using an integrated VLM-LLM approach) with DNN-based
models for object detection to form a self-adaptive NSAl-enabled system. Figure 1 depicts our overall solution architecture,
which consists of three stages. Each stage contributes to the self-adaptation process where domain-specific representations are
extracted, mapped to symbolic embeddings, and proportionally merged at the point of inference. This NSAl-enabled system
ensures UDA through dynamic re-weighting of the final merged model, while preserving the essential feature representations.
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Figure 1: Solution Architecture - UDA for Objective Detection using a Self-Adaptive NSAI-enabled System

ISBN: 97819384969-9-8 002



Proceedings of the Annual General Donald R. Keith Memorial Conference
West Point, New York, USA
April 24, 2025

A Regional Conference of the Society for Industrial and Systems Engineering

3.1. Data Curation

Our NSAI-enabled system is trained and tested with simulated overhead drone images from the Multiple Distribution
Shift - Aerial (MDSA) dataset, which provides imagery useful for overhead object detection tasks (Ngu et al., 2025). Further,
use of this dataset is useful for simulating real-world variability in weather and visibility. Although all subsets in MDSA contain
urban landscapes, they are differentiated into five distinct domains: Clear, Dust, Fog, Rain, and Snow. We selected three - Clear,
Dust, and Rain - for training. Each domain contains 100 images, approximately half of which include vehicles (Figure 2).

To prepare the dataset for object detection, we first estimate the number of objects in each image using entropy-based
object counting. Estimating object count enables pseudo-labeling without human input, which is critical to adapting to new,
unlabeled domains. This method identifies regions in an image with high pixel variability, which correspond to areas most likely
to contain objects (Figure 3). With this estimate, we better gain a quantitative understanding of the image’s complexity without
needing the label. Additionally, we can better inform the appropriate masking strategy for later stages of data curation.

With the object number estimates, we use MaskCut (Wang, Girdhar, Yu, & Misra, 2023) to generate masks to isolate
the distinct objects in the unlabeled images. MaskCut provides pseudo-labels to allow for training models without needing
manual annotation. It works by constructing an affinity matrix, measuring the cosine similarity between image patch feature
vectors extracted with a vision transformer backbone. With the estimated count, we iteratively apply the process of matrix
partitioning to signal background and foreground regions to ensure the masks are more granular. Initial masks may notice the
outline of a vehicle, but after this refinement process, finer details like side mirrors are distinguishable (Figure 4). Creating
these pseudo-labels for training models in any new environment helps to support adaptation when ground truth is not available.
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Figure 2: MDSA Example Image Figure 3: Fig. 2’s Object Count Figure 4: MaskCut Pseudo-Label

3.2. Deep Neural Network Model Training

For each domain, we train a ResNet50-based model using the MaskCut-generated pseudo-labels. Training separate
models for each environment is essential to capturing the unique features in each domain, thus improving model performance
in varied conditions. The ResNet50 backbone is initialized with pre-trained weights from a Distillation with No Labels model
to leverage its feature extraction ability. Each model is trained with a single object class, aligning with the pseudo-label rep-
resentation. For simplicity, the single class is cars. Training parameters are a base learning rate of 0.001, a batch size of two
images per iteration, and a maximum of 1,000 iterations. The models are trained independently but have the same architecture.

We next use a VLM to incorporate symbolic reasoning into the solution architecture. The use of a VLM enables the
system to ‘describe’ images in words at inference-time, helping it recognize environmental characteristics beyond the pixels.
This capability is a core element of our NSAI-enabled system, enabling the model to adapt to severe domain shifts. The Boot-
strapped Language-Image Pre-training (BLIP) model (Jian, Gao, & Vosoughi, 2024) is used due to its detailed and descriptive
captions generated zero-shot when given a visual input. This process aims to provide a textual description that captures the
domain-specific essence of images that may be considered as belonging to more than one domain. BLIP’s encoder-decoder
architecture extracts visual features and translates them into natural language descriptions. By integrating symbolic representa-
tions into the NSAI pipeline, the system’s ability to generalize across domains is improved without solely relying on traditional
feature alignment. The produced captions are designed to extend beyond generic descriptions, thus forming the foundation for
symbolic reasoning. In turn, this enables the final merged model to make logical inferences about the domain of each image.

ISBN: 97819384969-9-8 003



Proceedings of the Annual General Donald R. Keith Memorial Conference
West Point, New York, USA
April 24, 2025

A Regional Conference of the Society for Industrial and Systems Engineering

To quantify a domain’s proportion of the merged model, we use LLM-based textual embeddings generated from the
Bidirectional Encoder Representation from Transformers (BERT) model (Kenton & Toutanova, 2019). This helps the system
to understand how closely a new image matches each known environment, which guides the weighting of model contributions.
Domain-specific captions are tokenized into embeddings using a pre-trained BERT model. Domain embeddings are then formed
by averaging the encoded words and phrases, allowing direct comparison with new image captions. Its embedding is compared
with the domain vectors using cosine similarity to calculate the relevance of the domain. These similarity scores generate the
self-adaptive domain weights, which are used to dynamically adjust the contribution of each domain in model merging.

With trained models and domain weights, we merge models utilizing a novel approach inspired by MagMax (Marczak
etal., 2024) to combine domain-specific models into a unified architecture. Merging ensures we combine the strengths from each
domain-specific model, allowing generalization to unseen environments. The merging strategy balances proportional constraints
from the textual embeddings with magnitude-based adjustments to preserve the models’ critical features. For each shared model
parameter, we compute a proportional merge as a weighted sum of the parameter values. To further refine the process, we conduct
a magnitude-based adjustment of the merged model’s final parameters by comparing the weighted magnitude of each parameter.
The highest-magnitude parameter is selected as the dominant contributor, ensuring the model retains domain-specific features.
This adjustment is the critical component to ensuring domain-specific features are not diluted. The final merged parameter
is computed as a blend of the proportional merge and the magnitude-adjusted parameter. This weighted merging approach
(Algorithm 1) retains each domain’s strength while preventing significant overfitting to any one domain.

Algorithm 1: Weighted Magnitude Selection for Model Merging
Input: Domain models 64, 0., 6., Image caption
Output: Merged model 61
Compute Domain Weights:
forall D € {dust, clear, rain} do
Compute embedding vp from domain phrases
end
Compute caption embedding vc and similarity scores sp < cos(ve, vp)
Normalize weights: wp < sp/ > sp
Merge Model Parameters:
forall parameters k in Op; do
Compute proportional merge: 0% < >, wpbp
Compute magnitude weights: MF < wp|6%|

Select dominant parameter: 6% <+ Ourg max( Mk ME M)
Final merge: 0%; < 0.56% + 0.50%

end

Load 6, into model

return 6,/

3.3. Solution and Experimental Setup

To evaluate the effectiveness of the trained models, we measure performance using Precision and F1 Score. Perfor-
mance is evaluated at the pixel level by comparing predicted object masks with ground-truth annotations. These metrics aim to
provide a comprehensive understanding of the proposed approach’s ability to detect objects in the unlabeled, cross-domain test
set images. For evaluation, we randomly select 20 images and their corresponding annotations for processing. Each image’s
pixel values are normalized and the assessment is on just one object class, cars.

We compare the model’s predicted binary masks against ground-truth masks derived from polygonal annotations. This
allows for a direct assessment of the models. To ensure consistency across each variation, we manually label images for each
evaluated model’s test set. While ground-truth annotations may be applicable to our system for validation, they lack feasibility in
the more practical setting the system aims to emulate. We apply a confidence threshold of 0.1 to refine the predicted masks which
ensures that the system accounted for high-probability predictions while suppressing noise in uncertain regions. However, given
the use of binary masks, we aggregate the results for each image then average each image’s result to assess final performance.
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4. Results and Discussion

First, we assessed the single-domain and merged models on the multi-domain test set (Figure 5). The individual single-
domain models performed comparably to one another, but each suffered slight performance degradation when tested outside its
training domain. Precision and F1 scores in cross-domain settings frequently dropped below 0.3 and 0.2, showing their inability
to generalize beyond a single domain condition. By contrast, the merged model maintained precision and F1 scores exceeding
0.4, demonstrating improved stability across domains (Table 1). This confirms that weighted magnitude selection preserves
critical domain-specific features while allowing the model to generalize effectively.

Next, we evaluated the models on their respective single-domain training sets. Unexpectedly, the single-domain models
did not achieve the highest performance within their own domains (Table 2). Instead, the merged model outperformed almost all
single-domain models, even in their original training domains (Figure 6). This suggests that model merging is not simply a self-
adaptation mechanism for domain shift but also enhances performance within individual domains. The observed underfitting
aligns with expectations for any unsupervised setting but remains rationale for the confirmation of our original hypothesis.
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Figure 5: Performance on Multi-Domain Test Set
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Figure 6: Performance on Single-Domain Training Sets

Table 1: Multi-Domain Test Set Results Table 2: Single-Domain Training Set Results
Model Precision F1 Score . Precision F1 Score
Domain
Dust 0.1496 0.2054 SDM MM SDM MM
Clear 0.3182 0.3687 Dust 0.2162 0.2282 | 0.3166 0.3120
Rain 0.2790 0.3798 Clear 0.1442 0.2484 | 0.2355 0.3244
Merged 0.4266 0.5050 Rain 0.3430 0.3593 | 0.4320 0.4783

These results reveal the viability of our proposed NSAI approach for UDA, as existing UDA methods struggle when
domain shifts are severe, often requiring explicit domain alignment or labels. Our approach achieves cross-domain generaliza-
tion without retraining, meaning that models can dynamically self-adapt at inference time without significant prior exposure
to unseen environments. For real-world military applications, such as aerial intelligence, surveillance, or reconnaissance, this
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ability is critical to success due to rapidly changing environmental conditions, even in a singular location. The ability to merge
models at inference time without any human intervention ensures that the system’s ability to identify these domain shifts is
strong. Our self-adaptive NSAI-enabled system shows that in unsupervised tasks, performance can increase across domains.

5. Conclusion

Our results indicate that weighted magnitude selection enables model merging without retraining while maintaining
performance across domains. Even without ground-truth annotations for training, the merged model outperformed the single-
domain models in both cross-domain and same-domain settings. These results highlight that potential of our NSAI framework to
address a major limitation of traditional UDA methodologies: the inability to self-adapt at inference without domain supervision.
With further development, this means Al systems can continue functioning in dynamic environments without needing human
intervention or manual re-training. Several challenges still remain. The computational efficiency of our approach is a key
concern, as the reliance on BERT for the self-adaptive component is bulky and the ResNet50 models are not as lightweight as will
be feasible on some low size, weight and power platforms. While the merging strategy takes a positive step towards preventing
forgetting, further refinement is necessary to ensure stability when incorporated into a wider range of domains with more single-
domain models. Future will work focus on three areas: 1) we will reduce computational overhead by exploring lighter-weight
object detection and multi-modal language models; 2) we will extend the approach to handle real-world aerial imagery with
lower-resolution data, and 3) we will integrate our approach into a hierarchical federated learning paradigm for decentralized
self-adaptation. These improvements will ensure that the system more closely aligns with expectations of future battlefield
settings. Additional effort will incorporate military equipment imagery, varied terrain, and diverse domains to better simulate
real-world battlefield conditions. Real-world Al-enabled systems must function in complex, dynamic operating environments
where domain shifts are constant and unpredictable. By eliminating reliance on labels and re-training, our NSAI-based approach
takes a step forward to bridge the gap in UDA. Continued refinement will be necessary to move this methodology from proof-
of-concept to operational readiness, ensuring that the military’s Al-enabled systems hold an advantage on the battlefield.
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