Proceedings of the 1st Annual World Conference of the Society for Industrial and Systems Engineering, Washington, D.C, USA September 16-18, 2012

Modeling A Fuzzy Logic System Using Central Composite Design

Rolando J. Praga-Alejo¹, David S. González-González¹, Pedro Pérez-Villanueva¹, Mario Cantú-Sifuentes¹, and Bernardo D. Flores-Hermosillo²

¹ COMIMSA (Corporación Mexicana de Investigación en Materiales). Calle Ciencia y tecnología No. 790, Fracc. Saltillo 400 C.P. 25290, Saltillo, Coah., México. Phone: (+52) 01 844 411-3200 Ext. 1217.

² Facultad de Sistemas, Universidad Autónoma de Coahuila, Ciudad Universitaria, Carretera a México Km 13, Arteaga, Coahuila, México. Phone: (+52) 01 844 171 50 02.

Corresponding author's Email: rolandopraga@comimsa.com

Abstract: Fuzzy Logic has been intensively used for modeling complex process, for the design of experiments, and in statistics for approximating variables. This paper presents a new Fuzzy Logic System supported in Central Composite Design, used to analyze and model a machining process. The results indicate that this hybrid approach is a good alternative method for modeling and predicting outcomes during a machining process.

Keywords: Fuzzy Logic System, Central Composite Design, Modeling, Machining Process