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Abstract: The Robust Parameter Design (RPD) intends to make products and processes insensible to sources of variability. 
Therefore, it is important to identify the causes of variation in the process and the environment.  However, if there are mixing 
factors in the process, then it must also consider the proportions of each of them and thereby obtain a robust product. In order 
to consider noise and mixing factors, crossed designs must be conducted. These designs require a lot of information across 
internal and external arrangements; unfortunately, it is not always possible to run a full factorial design and it is even more 
difficult to replicate it. This constraint, leads us to analyze an unreplicated design and compare it against a split design to 
evaluate the performance of both. 
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1. Introduction 
 
RPD considers controllable factors of interest, but also those uncontrollable or noise factors that often cause 

variation in the response. It is desirable to find the optimal settings of the controllable factors such that the process or product 
is robust or insensible to variability. However, if mixture factors are present in the process, we have to consider as 
controllable factors q components (x1, x2, … xq), c process controllable variables (w1, w2, …, wc) and n noise or 
uncontrollable variables  (z1, z2, …, zn

 

). In order to give a solution to this type of problem, a polynomial function denoted by 
equation (1) is fitted by the least squares method. A crossed array design is used to obtain the observations.  

( , , )Y f x w z ε= +  (1) 
 
Controllable and noise variables are assumed to be continuous, linear, centered and coded with mean zero. Historical 

or theoretical data can be used to center them to ± 1 2ˆ zσ as well as the variance, which includes the parameter estimation error 
of the model and the transmitted variability by the noise variables at a new y-value. There are situations when the factorial 
designs are not possible because the lack of resources or when the number of factors are up to five, thus we use fractional 
designs to conduce the experiment. This problem has been studied by: Cornell (1995), Steiner & Hamada (1997), Goldfarb et 
al. (2003), Borror et al. (2003), Montgomery (2012), Tan et al. (2009). 

 
 

2. Methodology 
 

 An experiment design was performed with three mixture components, one process and two noise variables with 
unreplicated measures. The data response was obtained by simulation. The mixture proportions are set in the inner array as 
well as the process variables, while the noise variables conforms the external array. We selected a simplex centroid design to 
perform the experiment with 56 observations in the case of a full factorial design and 28 observations in a fractional design 
case. Individual model terms will be tested at 5% significance level. Both designs of experiments will be analyzed to 
compare the results given by Goldfarb's methodology using full factorial and fractional designs when a minimization and 
maximization problem is present. 
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