

A Two-Stage Deep Reinforcement Learning Framework for Solving Large
Capacitated Vehicle Routing Problems

 A. Arishi, K. Krishnan, and V. Maru

Department of Industrial, Systems and Manufacturing Engineering,

Wichita State University
Wichita, KS 67220, USA

Corresponding author's Email: aaarishi@shockers.wichita.edu

Abstract: The Vehicle Routing Problem (VRP) is one most studied NP-hard combinatorial optimization problems due to its
practical importance and methodological interest. Yet despite considerable progress, existing approaches including traditional
heuristics and learning methods, struggle to find a fast and high-quality solution for large-scale VRPs. Most of the recent works
using Deep Reinforcement Learning (DRL) for VRPs ignore the scalability aspects as they solve small instances with at most
100 customers. Also, they do not consider real-world or complex settings as they only test the trained model on random datasets
generated from the same distribution with similar characteristics. This paper proposes a two-stage DRL framework to
approximately solve the large capacitated vehicle routing problems (CVRP). In this framework, a DRL with an attention
mechanism is trained using early stopping to increase generalizability and avoid overfitting on small CVRPs. Then, the trained
DRL is combined with a local improvement 2-opt heuristics to further improve the solution. Moreover, as opposed to other
works, the proposed approach is tested on several classical benchmark instances to investigate the scalability and
generalizability. These instances are generated to fill the gap between the real world and simulation and pose a significant
challenge even for modern heuristics and metaheuristics. The results show that a DRL trained on small-scale CVRP100
generalizes and scales well to larger instances. More importantly, hybridization using the 2-opt algorithm improves the solution
quality and overcomes the drawback of the learned heuristics. When tested on different benchmark problems, the proposed
framework outperforms Google’s optimization tools (OR-tools) and classical heuristics in the aspect of both solution quality
and execution time. This approach is desirable for practical CVRPs that are usually complex, large-scale and requires real-time
decisions.

Keywords: Deep Reinforcement Learning, Large Capacitated Vehicle Routing Problem, Hybrid Model

1. Introduction

As VRP is a hard combinatorial problem, sophisticated exact algorithms such as column generation, branch-and-

bound, branch-and-cut, branch-and-price can find an optimal solution only for small problems in a reasonable time. Thus, using
them to solve large-scale VRP problems becomes impractical when response time is crucial. Therefore, researchers have
focused on developing intuitive methods for solving these challenging problems. Several constructive heuristics, local
improvement heuristics, and metaheuristics algorithms are introduced in literature; they can provide a suboptimal solution
within an acceptable time for large-scale problems (Vidal, Crainic, Gendreau, & Prins, 2013). Constructive heuristics attempt
to produce solutions constructively in a greedy manner using handcrafted rules. Examples of these heuristics include Clarke-
Wright Savings, Cheapest Insertion and Sweep algorithms. However, handcrafted heuristics tend to be problem-specific, and
hence designing them for combinatorial optimization becomes a non-trivial task. These classical heuristics are relatively simple
to implement but suffer from a limited search space as they stop at the local optimum. Metaheuristic methods are designed to
escape the local optima through a wider exploration of search space. These Metaheuristic methods have become a practical
way of solving VRP and its variants. Popular metaheuristics used for solving VRP problems include Ant Colony Optimization
(AOC), Simulated Annealing (SA), Tabu Search (TS), iterated local search (ILS), and Genetic Algorithm (GA). Despite their
popularity, the implementation of metaheuristics requires many design choices and parameters tunning for the algorithm to
perform efficiently. Thus, the quality of metaheuristics algorithms can vary greatly depending on the values of these parameters
and the selected random seed, which makes comparing them a challenging task (Labadie, Prins, & Prodhon, 2016). In modern
operation research, constructive heuristics are used to generate initial solutions for metaheuristics. Therefore, a weak initial
solution can increase the search space, affecting the solution time and quality of metaheuristics algorithms. Local improvement
heuristics works by taking an existing final solution delivered by construction or metaheuristics as an initial solution. Given

Proceedings of the 10th Annual World Conference of the
Society for Industrial and Systems Engineering,
2021 SISE Virtual Conference
September 23-24, 2021

ISBN: 97819384962-1-9 017

mailto:aaarishi@shockers.wichita.edu

the current initial feasible routing, iteratively, a local improvement algorithm such as two-point swap, relocate, and 2opt makes
some changes in that route resulting in an improved feasible solution with less cost (Groër, Golden, & Wasil, 2010).

Recent studies show that machine learning, especially Deep Reinforcement Learning (DRL), can automatically learn
better heuristics than the one designed by a human for solving challenging NP-hard problems (Drori et al., 2020; Liu, Chang,
& Tseng, 2020; Vesselinova, Steinert, Perez-Ramirez, & Boman, 2020). DRL has achieved a remarkable result in solving VRPs
(Vesselinova et al., 2020). However, the developed DRL models cannot be trained for a large number of customers because
the state space and action space expand exponentially as the number of customers increases, making it hard for the DRL to
learn a useful routing policy. Current deep learning approaches for CVRP have strongly emphasized improving the learning
phase to slightly outperform the previous learning model for non-practical VRPS. Most recent works ignored the scalability
and generalizability aspects as they solve small VRPs with up to 100 customers using manually generated instances that ignore
the complex nature of VRP (Vesselinova et al., 2020). On the contrary, few attempts utilize DRL for solving large TSP. For
instance, Ma, et al., (2019) developed a graph pointer network model and trained it using an early stopping method to increase
generalizability to solve large-scale TSP problems. Xu et al., (2021) developed an attention-based DRL model with enhanced
node embedding to address different types of routing problems. Their work showed the generalization ability of attention-based
models to address large TSP with 1000 customer nodes.

This paper introduces a two-stage DRL framework to address the previous challenges for large CVRP. A variant of
DRL called the Attention model (AM) (Kool, Van Hoof, & Welling, 2018) is trained using the early stopping rule in the first
stage. In the second stage, the trained DRL is combined with 2-opt local improvement heuristics to further improve the results.
Investigating the generalizability of DRL and the effect of hybridization has not been considered in the previous research
(François, Cappart, & Rousseau, 2019). Most of the recent works focus on small-sized CVRPs and other improvement
techniques such as beam-search and sampling during the decoding to enhance the quality of the solutions (François et al., 2019).
These methods work well for small-size problems only since they can provide a set of diverse solutions but fail when the size
of the problem increases. Therefore, we choose a greedy decoding strategy during the testing before applying the 2-opt
algorithm. The AM is very fast in the greedy decoding setting since it is specifically designed for it. As pointed out in (Kool et
al., 2018), the AM can benefit from a post-processing procedure to handle the intercrossed route developed by the agent. Thus,
we apply 2-opt in order to find an appropriate balance between solution quality and execution time when solving practical
CVRP. Extensive experiments are carried out to evaluate the proposed methods. Different OR-tools metaheuristic strategies
are used to conduct a competitive and fair experiment. As opposed to the previous learning model, the proposed method is
tested on several classical CVRP benchmark instances developed by (Uchoa et al., 2017). These instances are generated to fill
the gap between the real world and simulation and pose a significant challenge even for modern heuristics and metaheuristic
(Uchoa et al., 2017). Results show that the hybrid DRL model outperforms the Google OR-tools with higher solution quality
and shorter execution time.

This paper is organized as follows. Section 2 defines the CVRP and describes the selected DRL architecture. In Section
3, we explain the experiment in detail. Section 4 concludes this paper and highlights future work.

2. Deep Reinforcement Learning for CVRP

2.1 Problem Formulation

This paper focuses on CVRP which is a generalization of the TSP, where there is one depot and set of n customer

points to be served. In a typical CVRP instance, the input X = {x0, . . . , xn} is a set of nodes that represents the depot X0 and
customers Xi , i ∈ {1, … , N}. For each input point Xi, it has two elements (ci, di), where (ci = (xi, yi)) is a 2-dimensional
coordinate of customer i in Euclidean space, and di is the corresponding customer demand (d0 = 0). Several vehicles are needed
to serve the customer demand. All vehicle starts and ends at the depot X0. Each vehicle has a limited capacity Q and can serve
a set of customers in each route as long as the total customer demand does not exceed the capacity. In this research, all vehicles
are considered to be homogenous, where all vehicles have the same capacity. The traveling cost Cij is the cost and proportional
to the distance traveled by the vehicle from customer i to customer j, with i ; j ∈ {1,…, N}. The solution of the CVRP is
represented by a set of routes that satisfies the constraints. This solution can be viewed as a sequential decision problem, where
the solution sequence is 𝛑𝛑 =(𝛑𝛑 𝟏𝟏 ,...,𝛑𝛑 𝒕𝒕) and t ∈ {1, …, N} represents the vertices of every solution which starts and ends at the
depot. Unlike TSP, the solution to CVRP may have varying sequence lengths. This is due to the fact that the vehicle may have
to return to the depot several times to refill, even with the same number of customers.

Given a problem graph X, the DRL model uses the attention-based encoder-decoder architecture from Kool et al.,
(2018). The encoder extracts the structural features of graph X for all input nodes. Then, the decoder integrates the outputs of
the encoder with a problem-specific masking scheme and context to produce the solution sequence. This process starts from a
random node in the graph and predicts a probability distribution over nodes, one node for one vehicle at each timestep. A node

Proceedings of the 10th Annual World Conference of the
Society for Industrial and Systems Engineering,
2021 SISE Virtual Conference
September 23-24, 2021

ISBN: 97819384962-1-9 018

with the highest probability is chosen and attached to the end of the partial solution. When the partial solution has been
constructed, it cannot be changed, and the problem at that time is to find a path from the last node for each vehicle’s partial
solution through all unvisited nodes to the depot. The entire solution of a CVRP is denoted by π; our objective is to minimize
the total routing length or cost L as follow:

 𝐿𝐿(𝜋𝜋|𝑋𝑋) = ∑ �𝑐𝑐 π (𝑡𝑡) − 𝑐𝑐 π (𝑡𝑡+1)�𝑛𝑛−1

𝑡𝑡=1 2
 , (1)

Where ‖ . ‖2 denotes ℓ2 norm.
Therefore, the DRL model, parameterized by θ and given a problem graph X, needs to define a stochastics policy

pθ(π|X) for selecting a solution sequence π that can minimize the total routing length L. This stochastics policy can be
factorized as follows:

 𝑝𝑝𝑝𝑝(𝜋𝜋𝑡𝑡|𝑋𝑋) = � 𝑝𝑝𝑝𝑝(𝜋𝜋𝑡𝑡|𝑋𝑋, 𝜋𝜋1: t − 1)𝑁𝑁

𝑡𝑡=1 (2)

As a graph-based method, this stochastics policy can scale to larger instances without retraining for every new problem
instance. Therefore, we can use the trained model to generate a fast and quality solution as a sequence of consecutive actions
for new problems.

2.2 Encoder Framework

In the encoder framework, the graph attention network is used to provide a mapping from raw nodes features space to

a richer embedding in the context of a graph. First, it computes the initial node embedding 𝒉𝒉𝒊𝒊
(𝟎𝟎)for each input node xi through

a linear transformation with learnable parameters W and b. Separate parameters W0 and b0 are used to compute the initial
embedding 𝒉𝒉𝟎𝟎

(𝟎𝟎)
R :

 𝒉𝒉𝒊𝒊
(𝟎𝟎) = �𝑊𝑊 𝑥𝑥𝑖𝑖 + 𝑏𝑏 𝑖𝑖𝑖𝑖 ≠ 0

𝑊𝑊0𝑥𝑥𝑖𝑖 + 𝑏𝑏0 𝑖𝑖𝑖𝑖 = 0 (3)

The initial node embeddings are updated using multiple attention layers N. Each attention layer consists of two sub-
layers: a multi-head attention sublayer and a node-wise fully connected feed-forward sublayer. The multi-head attention is used
to combine and update the features of the nodes by extracting different types of information from all others. It can be interpreted
as a weighted message passing between the nodes in a graph of layers. In the layer ℓ ∈ { 1,…,N}, 𝒉𝒉𝒊𝒊

(𝓵𝓵)represents the node
embedding of each node i, and the output {h0(ℓ−1),…, hn(ℓ−1)} of the previous layer ℓ-1 is the input of the current layer ℓ. Then,
the multi-head attention vector 𝑴𝑴𝑴𝑴𝑴𝑴𝒊𝒊

(𝓵𝓵)combines a set of values v of each node i regrouped based on the similarity between
their queries and linked keys, which can be computed as follow:

 𝑞𝑞𝑖𝑖𝑖𝑖
(ℓ)= 𝑊𝑊𝑖𝑖

𝑄𝑄ℎ𝑖𝑖
(ℓ−1) , 𝑘𝑘𝑖𝑖𝑖𝑖

(ℓ)= 𝑊𝑊𝑖𝑖
𝑘𝑘ℎ𝑖𝑖

(ℓ−1) , 𝑣𝑣𝑖𝑖𝑖𝑖
(ℓ)= 𝑊𝑊𝑖𝑖

𝑉𝑉ℎ𝑖𝑖
(ℓ−1) (4)

 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖
(ℓ) = �𝑞𝑞𝑖𝑖𝑖𝑖

(ℓ)�
𝑇𝑇

𝑘𝑘𝑖𝑖𝑖𝑖
(ℓ) (5)

 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖
(ℓ) = 𝑒𝑒

𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖
(ℓ)

∑ 𝑒𝑒
𝑢𝑢𝑖𝑖𝑖𝑖′𝑖𝑖

(ℓ)
𝑛𝑛
𝑖𝑖=0

 (6)

 ℎ𝑖𝑖𝑖𝑖
(ℓ) = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖

(ℓ)𝑛𝑛
𝑖𝑖=0 𝑣𝑣𝑖𝑖𝑖𝑖

(ℓ) (7)

 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖
(ℓ)�ℎ0

(ℓ−1), . . . , ℎ𝑛𝑛
(ℓ−1) � = ∑ 𝑊𝑊𝑖𝑖

𝑂𝑂𝑛𝑛
𝑖𝑖=0 ℎ′𝑖𝑖𝑖𝑖

(ℓ) (8)
Where, m ∈ { 1,…, M} represents the number of heads in each single attention layer, the qim (ℓ), kim(ℓ) , v𝒊𝒊m(ℓ) are the

query, key and value vectors for each node by projecting the embedding 𝒉𝒉𝒊𝒊
(𝓵𝓵−𝟏𝟏) . MAH takes the input as a set matrix of queries

qim∈ Rdk and matrix keys of kim∈ Rdk, and matrix values vim ∈ Rdv. It splits the computation onto M parallel to calculates the
compatibility 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖

(ℓ) between the respective keys 𝑲𝑲𝒋𝒋𝒋𝒋
(𝓵𝓵) for node j and queries 𝒒𝒒𝒊𝒊𝒋𝒋

(𝓵𝓵) for node i.
In the MHA, dh =128 is the vertical dimension of the 𝒉𝒉𝒊𝒊

(𝓵𝓵), which is used to scale the dot-products for normalized
similarity measures and prevent an overflow of numerical calculations. For each head M, the compatibility score is calculated
by using the method of scaled dot-product. Then, the attention weight aij ∈ [0, 1] is computed using softmax. This weight is

Proceedings of the 10th Annual World Conference of the
Society for Industrial and Systems Engineering,
2021 SISE Virtual Conference
September 23-24, 2021

ISBN: 97819384962-1-9 019

used to calculate the output of the attention 𝒉𝒉𝒊𝒊
′(𝓵𝓵). And the final output 𝑴𝑴𝑴𝑴𝑴𝑴𝒊𝒊

(𝓵𝓵) is computed with 𝑾𝑾𝒋𝒋
𝑶𝑶 . MHA sublayer can be

used as a graph encoder. However, it will not be able to perform any deep learning task and will lack the capability to represent
complex nonlinear functions. Therefore, in the transformer architecture (Vaswani et al., 2017), the MAH sublayer is followed
by a simple, fully connected feed-forward sublayer (FF) with

dimension dff to add nonlinear relation to the learning mechanism. The FF sublayer consists of 2 layers (hidden layer
and output layer) with skip connection to compute node-wise projections. For each node i in the FF network:

 ĥ𝑖𝑖
 (ℓ) = 𝑡𝑡𝑎𝑎𝑡𝑡ℎ (ℎ𝑖𝑖

(ℓ−1) + 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖
(ℓ)�ℎ0

(ℓ−1), … , ℎ𝑛𝑛
(ℓ−1)�), (9)

 𝐹𝐹𝐹𝐹(ĥ𝑖𝑖
(ℓ)) = 𝑊𝑊1

𝐹𝐹 + 𝑅𝑅𝑅𝑅𝐿𝐿𝑢𝑢 (𝑊𝑊0
𝐹𝐹ĥ𝑖𝑖

 (ℓ) + 𝑏𝑏0
𝐹𝐹 ,) + 𝑏𝑏1

𝐹𝐹 , (10)

 ĥ𝑖𝑖
 (ℓ) = 𝑡𝑡𝑎𝑎𝑡𝑡ℎ (ℎ𝑖𝑖

(ℓ) + 𝐹𝐹𝐹𝐹(ĥ𝑖𝑖
 (ℓ))), (11)

Finally, after N attention layer, the encoder computes an aggregated (graph embedding) 𝒉𝒉�(𝑵𝑵) = 𝟏𝟏
𝒏𝒏

� 𝒉𝒉𝒊𝒊
𝑵𝑵𝑛𝑛

𝑖𝑖=1 of all

nodes i as the mean of the final node embedding 𝒉𝒉𝒊𝒊
𝑵𝑵. Both of 𝒉𝒉𝒊𝒊

𝑵𝑵 and 𝒉𝒉�(𝑵𝑵) are used as input to the decoder.

2.3 Decoder Framework

In the decoder, at each time step t, one customer node is selected to visit based on the embedding from the encoder

and pervious partial solution π(t−1). The objective is to find a solution that minimizes the total routing length L in Eq(1). To
approach this problem with RL, the following subsequent subsections provide the basic elements of the RL.

2.3.1 Agent
The standard AM is a single-agent approach that is initially designed for TSP. CVRP is reformulated as a single

vehicle returning to the depot multiple times. In this formulation, partial solutions are sequentially built one after the other, and
there is no way to represent multiple partial solutions in parallel. Although this representation is simple, it works effectively
for CVRP since all vehicles have the same capacity. At each time step, the agent is in a given state and chooses a sequence of
actions action π t. The action chosen dynamically affects the environment and hence changes the state for the agent. Receiving
reward -L from the environment, the goal is to maximize the cumulative rewards by learning a good policy.

2.3.2 State
Each state in the decoder includes dynamic and static features. Static feature, which remains constant all the time,

includes the location and demand for each customer and the maximum capacity of the vehicle. These static features are
problem-specific since they stay unchangeable across solutions. Dynamic features are based on the running history (current/last
location), which includes the remaining capacity 𝑸𝑸′ and its current position at time step t. The static features represent the
initial state of the environment, while the agent state is represented by the dynamic features. The environment state is embedded
by the graph embedding 𝒉𝒉�(𝑵𝑵)computed by MHA. During the decoding, the 𝒉𝒉�(𝑵𝑵) is augmented with a special context vector to
represent the vehicle decoding context 𝒉𝒉𝒄𝒄

(𝑵𝑵) at each time step as:

 𝒉𝒉𝒄𝒄
(𝑵𝑵) = �

[𝒉𝒉�(𝑵𝑵) ; 𝒉𝒉𝝅𝝅,𝒕𝒕−𝟏𝟏
(𝑵𝑵) ; 𝑸𝑸�𝒕𝒕] 𝒕𝒕 > 𝟏𝟏

 [𝒉𝒉�(𝑵𝑵) ; 𝒉𝒉𝟎𝟎
(𝑵𝑵); 𝑸𝑸�𝒕𝒕] 𝒕𝒕 = 𝟏𝟏

 (12)

Where [;] is a concatenation operator, 𝒉𝒉𝝅𝝅𝒕𝒕−𝟏𝟏
(𝑵𝑵) is the embedding of the node chosen at time step t-1, 𝑸𝑸�𝒕𝒕 is the

remeaning capacity for a vehicle after visiting customer i which is updated as follow:

 𝑸𝑸�𝒕𝒕 = 𝒋𝒋𝒎𝒎𝒎𝒎 (𝑸𝑸�𝒕𝒕 − 𝒅𝒅𝒊𝒊) (13)

2.3.3 Action
The action 𝝅𝝅𝒕𝒕 specifies the next destination at current time t for the vehicle. Similar to the encoder, the context vector

𝒉𝒉′𝒄𝒄
(𝑵𝑵) is computed using the MHA as:

 𝒉𝒉′𝒄𝒄
(𝑵𝑵) = 𝑴𝑴𝑴𝑴𝑴𝑴 (𝒉𝒉𝒄𝒄

(𝑵𝑵)) (14)

At each construction step, the decoder keeps track of the running history in order to construct a feasible solution. Any
node that violates the CVRP constraints is masked. Therefore, any customer’s node that have been already visited or whose

Proceedings of the 10th Annual World Conference of the
Society for Industrial and Systems Engineering,
2021 SISE Virtual Conference
September 23-24, 2021

ISBN: 97819384962-1-9 020

demand is greater than the remaining capacity of the vehicle is masked by setting 𝒖𝒖𝒋𝒋,𝒕𝒕= −∞. The depot can be visited many
times but not in two consecutive time steps. Finally, the decoder computes the probability 𝑝𝑝𝑝𝑝(𝜋𝜋𝑡𝑡|𝑋𝑋) = � 𝑝𝑝𝑝𝑝(𝜋𝜋𝑡𝑡|𝑋𝑋, 𝜋𝜋1: t −𝑇𝑇

𝑡𝑡=1
1) of selecting the next node at each time step for with single head layer (M=1, so dk = dh):

 𝑞𝑞𝑐𝑐 = 𝑊𝑊1

𝑄𝑄 ℎ𝑐𝑐 , 𝑘𝑘𝑖𝑖 = 𝑊𝑊1
𝑄𝑄 ℎ𝑖𝑖

(𝑁𝑁), (15)

 𝑢𝑢𝑖𝑖 = 𝐶𝐶. 𝑡𝑡𝑎𝑎𝑡𝑡ℎ �
𝑞𝑞𝑐𝑐

𝑇𝑇𝑘𝑘𝑖𝑖

�𝑑𝑑𝑘𝑘
� , (16)

 𝑝𝑝𝑝𝑝(𝜋𝜋𝑡𝑡 = 𝑥𝑥𝑖𝑖|𝑋𝑋, 𝜋𝜋1∶t−1) = 𝑒𝑒𝑢𝑢𝑖𝑖

∑ 𝑒𝑒𝑢𝑢𝑖𝑖′𝑛𝑛
𝑖𝑖′=0

 (17)

where C is used for clipping the results within [-C, C] (C=10) using tanh.

2.3.4 Reward
When all demands are satisfied, the negative of the objective function L is received as a reward. As the cumulative

reward increases, the maximum length of all routes is minimized by defining the reward as the negative total route length in
the Euclidian space:

 −𝐿𝐿(𝜋𝜋|𝑋𝑋) = ∑ �𝐶𝐶 π (𝑡𝑡) − 𝐶𝐶π (𝑡𝑡+1)�𝑛𝑛−1
𝑡𝑡=1 2

 (18)
2.4 Model Training

DRL only needs the reward signal to train the network. The DRL model, parameterized by θ and given a problem
graph X, needs to be trained to find a stochastics policy 𝐩𝐩𝐩𝐩(𝛑𝛑𝐭𝐭|𝐗𝐗) for selecting a solution sequence π that can minimize the
expected total routing length of 𝐋𝐋(𝛑𝛑|𝐗𝐗):

 𝐽𝐽(𝑝𝑝|𝑋𝑋) = 𝐸𝐸π ~𝑃𝑃θ(.|X)𝐿𝐿(𝜋𝜋|𝑋𝑋). (19)

The policy gradient REINFORCE (Williams, 1992) is used to train the parameters:

𝛻𝛻𝜃𝜃𝐽𝐽(𝑝𝑝|𝑋𝑋) = 𝐸𝐸π ~𝑃𝑃θ(.|X)[(𝐿𝐿(𝜋𝜋|𝑋𝑋) – 𝑏𝑏(𝑋𝑋))𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃θ(π|X)], (20)

Where b(X) is the baseline for estimating the route length Eπ ~Pθ(.|X)L(π|X). A good baseline can reduce the gradient
variance and accelerate the learning process. The greedy rollout baseline is used to construct a greedy solution for the problem
in which the agent selects the best action with maximum probability at each time step. This baseline b(X) is updated at the end
of each epoch only if the difference in routing lengths for candidate parameters and a baseline is statistically significant based
on the t-test with α = 0.05. During the training process, batch B instances 𝑥𝑥1, 𝑥𝑥2,… 𝑥𝑥𝐵𝐵 is drawn from the same distribution S to
train the agent. Monte Carlo sampling is used to approximate the gradient in Eq(20):

 𝛻𝛻𝜃𝜃𝐽𝐽(𝑝𝑝) ≈ 1
𝐵𝐵

 ∑ [(𝐿𝐿(𝜋𝜋𝑖𝑖
𝑠𝑠|𝑋𝑋𝑖𝑖) – 𝐿𝐿(𝜋𝜋𝑖𝑖

∗|𝑋𝑋𝑖𝑖))𝛻𝛻𝜃𝜃 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃θ(𝜋𝜋𝑖𝑖
𝑠𝑠|𝑋𝑋𝑖𝑖)],𝐵𝐵

𝑖𝑖=1 (21)

Where 𝜋𝜋𝑖𝑖
𝑠𝑠 and 𝜋𝜋𝑖𝑖

∗, are the sample rollout and greedy rollout solutions of instance Xi. If 𝐿𝐿(𝜋𝜋|𝑋𝑋) – 𝑏𝑏(𝑋𝑋) is negative,
then the sampled solution is better than the greedy baseline, causing the solution to be updated, and vice versa. Hence, the agent
can effectively solve the routing problem by learning a good policy.

3. Experiments and Analysis

 3.1 Setup and Hyper-Parameters

Extensive experiments are conducted to investigate the performance of the proposed model in addressing the large
and practical CVRP. This research generated the training instances following (Nazari, Oroojlooy, Snyder, & Takáč, 2018),
where the node locations (xi,yi) and customer demands di are randomly generated from a uniform distribution. The coordinates

Proceedings of the 10th Annual World Conference of the
Society for Industrial and Systems Engineering,
2021 SISE Virtual Conference
September 23-24, 2021

ISBN: 97819384962-1-9 021

of the depot and 100 customers are randomly generated in the unit square [0, 1] × [0, 1]. It is assumed that the traveling cost
between two nodes Cij is proportional to the Euclidean distance. The demand of each customer is discrete and randomly
generated from {1, … ,9}; the capacity of vehicle Q is set to 50 units. The batch size B = 128 and learning rate 𝜂𝜂 = 0.0001. In
the encoder, we set the initial node embedding size 𝑑𝑑ℎ=128, the number of attention heads M=8, and the number of attention
layers N= 3. Finally, the DRL model was implemented in Python and realized using Pytorch. All experiments were conducted
on a workstation configured with AMD Ryzen 5 processor and GeForce RTX2060 GPU

3.2 Early Stopping and Model Selection

Before evaluating the model on a real-world dataset, it is necessary to ensure its generalizability. In order to increase
the generalization ability of the AM to larger-scale CVRP, CVRP100 is trained using an early stopping technique to avoid
overfitting on small problems with 100 customers. For this process, we use 1000 synthetic instances generated on the fly to
initially evaluate the performance of the learned policy on different levels of early stopping. During the training of CVRP100,
the model is stopped at a specific number of epochs and used the trained model to solve larger CVRP of n= {200, 500,
and1000}. In each epoch, 10000 batches of size B are processed (Total instances = 128*10000 per epoch) to keep training time
traceable. Since Sampling and beam search struggles with larger instances, we use greedy decoding when testing the trained
CVRP100. The comparison results between CVRP100 performance on various early stopping epochs is shown in table 1. The
results are the average total route length for all 1000 instances. The gap to the OR-Tools solution is also reported in Table 1.
We use the Automatic setting (Auto) for OR-tools to allow the solver to choose the best solution strategy. For the stopping
rule, we follow (Zhao, Mao, Zhao, & Zou, 2020) and set the search time limit for each problem instance to 30*n ms, where n
represents the number of customers.

 Table 1. Average total routing length obtained by CVRP100 on different epochs.

The CVRP100 model trained for 30 epochs is selected to solve the large-scale classical benchmarks problem. Using
Earley stopping rule, the AM-CVRP100 model appears to scale well when tested on instances generated from a uniform
distribution. However, it demonstrates difficulty scaling up to instances with N= 2000 customers. Therefore, we limit the testing
of the trained CVRP100 to instances with up to 1000 customers.

3.3 Hybridization strategy

In some cases, the learned policy by the agent creates a suboptimal routing plan where different routes are intercrossed.

Therefore, the heuristics learned by the DRL is combined with a 2-opt algorithm to quickly improve the outputted solutions
without increasing the execution time during the inference. The 2-opt was proposed by Croes, (1958) to solve TSP in 1958.
The main idea of the 2-opt is to identify two intercrossed routes and then rearrange them to form a new solution with less
distance. This process terminates when there is no further improvement in tour length. Every route generated in CVRP can be
considered a single TSP that can benefit from running 2-opt when the order of vehicle stops is suboptimal. However, the quality
of the initial solution obtained by the trained CVRP model affects the quality of the improved solution. For example, if the
agent performs more trips than necessary to the depot, running 2-opt will not yield a significant improvement in this case. For
this reason, evaluating the results before and after running 2-opt is critical for addressing the learning ability of DRL and the
improvement rate obtained by 2-opt.

Tour Cost 29.28 27.54 27.58 28.98 26.43
Gap 9.73% 4.03% 4.17% 8.80% 0.00%
Tour Cost 73.02 68.72 68.75 69.81 65.73
Gap 9.98% 4.35% 4.39% 5.84% 0.00%
Tour Cost 145.25 141.38 141.75 142.01 129.51
Gap 10.84% 8.40% 8.63% 8.80% 0.00%
Tour Cost 313.25 297.71 297.94 299.03 253.84
Gap 18.97% 14.74% 14.80% 15.11% 0.00%

OR-Tools

N=200

N=500

N=1000

N=2000

Epoch 10 30 50 100

Proceedings of the 10th Annual World Conference of the
Society for Industrial and Systems Engineering,
2021 SISE Virtual Conference
September 23-24, 2021

ISBN: 97819384962-1-9 022

3.4 Real-world Benchmarks and Baselines

To further investigate the robustness of the trained CVRP100 model, we test the CVRP100 trained for 30 epochs on

several classical benchmark instances created by (Uchoa et al., 2017). These instances cover different characteristics (e.g.,
capacity of vehicles, customer and depot locations, route length, distribution of demands) and represents a significant challenge
for modern heuristics and metaheuristics. For a detailed description of the instance characteristics, we refer the reader to (Uchoa
et al., 2017). To evaluate the performance of the proposed hybrid DRL model on the selected instances, the solutions are
compared against the well-known metaheuristic’s solver OR-Tools. OR-Tools has different strategies for finding the initial
solution, which can be incorporated into different metaheuristics algorithms. The recommended setting uses the Path Cheapest
Arc strategy heuristics with Guided Local Search (GLS) metaheuristic. We use different settings for OR tools: 1) we use the
automatic setting and allow the solver to automatically choose the best combination of heuristics and metaheuristics based on
the targeted problem. 2) we fix the initial solution strategy and use Simulated Annealing (SA) and Tabu Search (TS). OR-
Tools library for VRP includes 12 different heuristics, each of which can be incorporated into more search exhausting
metaheuristics algorithms (Kruk, 2018) (Surana, 2019). Hence, testing all combinations is out of the scope of this paper. The
run time for each instance is set to 30*n ms. It should be noted that most of the previous DRL approaches in the literature did
not specify or mention the stopping criteria or the setting used for OR tools.

3.5 Results

The DRL testing results are all obtained by using the final learned policy using greedy decoding. We run the policy
trained on CVRP100 on 13 instances with sizes between 143 to 979. Each instance has a different vehicle capacity and is
generated using various customer locations, depot locations, and demand distribution. The best-known solution for these
instances was obtained using sophisticated exact and non-exact methods. In most large CVRP instances, long-running time
was required to obtain such a quality solution. Therefore, we do not compare our approach to these highly specialized
algorithms. Instead, the obtained best-known solutions are used to evaluate the performance of the adopted approach. Table 2
shows the results of the hybrid DRL model compared to different OR-tools baselines.

Table 2. Results on CVRP benchmarks

The results show that the hybrid DRL (AM-CVRP100 + 2opt) achieves the lowest average gap of 12.79% with

significantly less execution time. The smallest instance was solved in 0.2 seconds, while it took 8.6 seconds to solve the largest
instance. Also, our method outperformed OR tools in 6 out of 13 instances tested. These results are promising since OR-tools
is a highly specialized solver with fine tunned parameters. Our best results for each instance are produced by using the hybrid
DRL only. On the other hand, the best results obtained by OR-tools are generated using different metaheuristics strategies.

Instance DRL (greedy) DRL (greedy)
& 2opt

OR-tools
(Auto &

Auto)

OR-tools
(Path

Cheapest Arc
& GLS)

OR-tools
(Path

Cheapest
Arc & SA)

OR-tools
(Path

Cheapest
Arc & TS)

Best
Known
Results

X-n143-k7 20210 (0.2s) 17431 (0.3s) 17392 17451 17332 16909 15700

X-n261-k13 33110 (0.3s) 30231 (0.7s) 29373 29671 30143 29402 26558

X-298-k31 40181 (0.4s) 37900 (1s) 40478 41476 41481 41505 34321

X-n303-k21 25935 (0.4s) 23838 (1.2s) 24193 24457 24779 24820 21744

X-n449-k29 64433 (0.7s) 60436 (2.4s) 60821 60853 60870 60880 55358

X-459-k26 30480 (0.7s) 27800 (2.5s) 27067 27776 26995 27088 24181

X-n513-k21 33009 (1s) 28026 (3.1s) 27999 28184 28128 27591 24201

X-n613-k62 72433 (1.4s) 69989 (3.6s) 69966 73460 69999 70011 59778

X-685-k75 80743 (1.8s) 78770 (3.8s) 85256 92686 91786 83905 68425

X-n716-k35 55797 (1.9s) 50110 (4.4s) 58782 58930 50393 51125 43525

X-766-k71 143127 (2.3s) 133019 (5.3s) 135070 131825 133199 135447 114683

X-n895-k37 69110 (3s) 60274 (6.8s) 60442 59993 61746 61429 54172

X-n979-k58 136010 (3.5s) 127260 (8.6s) 130673 127297 127545 128519 119194

Average Gap 23.26% 12.79% 14.21% 14.30% 14.77% 14.71% 0.00%

Proceedings of the 10th Annual World Conference of the
Society for Industrial and Systems Engineering,
2021 SISE Virtual Conference
September 23-24, 2021

ISBN: 97819384962-1-9 023

Although using the automatic strategy shows better performance than other strategies, it is not clear which strategy works the
best for all the instances. The learned policies by the DRL trained with 100 customers are not too far from OR-tools. We noticed
that The DRL generalizes well when tested on instance from a uniform distribution, but it has difficulty generalizing when
tested on the problem out of the distribution. By visualizing the solution, we found that the main reason for the weak
generalization is not the number of generated routes but the order of customer visits in each individual route. It appears that the
agent learned how to generate an appropriate number of routes in sequence based on the vehicle capacity but struggles with the
customer visits in these routes. Therefore, each route is treated as a single TSP in the hybrid DRL and improved with 2-opt.
Around 45% decrease in the average gap is observed when running the 2-opt on the top of the DRL solution. The 2-opt
algorithm terminates when TSP tours cannot be improved by 2-change anymore. Figure 1 shows a visualization example of the
solution obtained by DRL vs. Hybrid DRL for X-n143-k7

(a) DRL solution (b) Hybrid DRL solution

Figure 1. Visualization for X-n143-k7 instance

4. Conclusion

This paper proposes a two-stage DRL framework to approximately solve the large CVRP. First, a DRL using an

attention mechanism is trained with early stopping to avoid overfitting on the small instances. Then, the trained model is
combined with a local search 2-opt to handle the drawback of the learned policy. The proposed approach is tested on classical
benchmark instances to evaluate its applicability for solving practical CVRP. The experimental results on several classical
CVRPs showed that the hybrid DRL model not only improves the solution quality but also outperforms the optimization solver
OR-tools with less execution time.

Concerning future studies, it is interesting to see how the proposed framework can improve the solution when used
for generating initial solutions for OR-tools or other metaheuristics. Also, future problems with more realistic constraints, such
as CVRP with time-window and multiple depots, will be considered.

5. References

Croes, G. A. (1958). A method for solving traveling-salesman problems. Operations research, 6(6), 791-812.
Drori, I., Kharkar, A., Sickinger, W. R., Kates, B., Ma, Q., Ge, S., . . . Udell, M. (2020). Learning to solve combinatorial

optimization problems on real-world graphs in linear time. arXiv preprint arXiv:.03750.
François, A., Cappart, Q., & Rousseau, L.-M. J. a. p. a. (2019). How to evaluate machine learning approaches for

combinatorial optimization: Application to the travelling salesman problem.
Groër, C., Golden, B., & Wasil, E. (2010). A library of local search heuristics for the vehicle routing problem. Mathematical

Programming Computation, 2(2), 79-101.
Kool, W., Van Hoof, H., & Welling, M. (2018). Attention, learn to solve routing problems! arXiv preprint arXiv:08475.
Kruk, S. (2018). Practical Python AI Projects: Mathematical Models of Optimization Problems with Google OR-Tools:

Apress.
Labadie, N., Prins, C., & Prodhon, C. (2016). Metaheuristics for vehicle routing problems: John Wiley & Sons.
Liu, C.-L., Chang, C.-C., & Tseng, C.-J. (2020). Actor-critic deep reinforcement learning for solving job shop scheduling

problems. IEEE Access, 8, 71752-71762.

Proceedings of the 10th Annual World Conference of the
Society for Industrial and Systems Engineering,
2021 SISE Virtual Conference
September 23-24, 2021

ISBN: 97819384962-1-9 024

Ma, Q., Ge, S., He, D., Thaker, D., & Drori, I. (2019). Combinatorial optimization by graph pointer networks and
hierarchical reinforcement learning. arXiv preprint arXiv :04936.

Nazari, M., Oroojlooy, A., Snyder, L. V., & Takáč, M. (2018). Reinforcement learning for solving the vehicle routing
problem. arXiv preprint arXiv:04240.

Surana, P. (2019). Benchmarking Optimization Algorithms for Capacitated Vehicle Routing Problems.
Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., & Subramanian, A. (2017). New benchmark instances for the

capacitated vehicle routing problem. European Journal of Operational Research, 257(3), 845-858.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017). Attention is all you

need. arXiv preprint arXiv:.03762.
Vesselinova, N., Steinert, R., Perez-Ramirez, D. F., & Boman, M. (2020). Learning Combinatorial Optimization on Graphs:

A Survey With Applications to Networking. IEEE Access, 8, 120388-120416.
Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2013). Heuristics for multi-attribute vehicle routing problems: A survey

and synthesis. European Journal of Operational Research, 231(1), 1-21.
Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine

learning, 8(3-4), 229-256.
Xu, Y., Fang, M., Chen, L., Xu, G., Du, Y., & Zhang, C. (2021). Reinforcement Learning With Multiple Relational Attention

for Solving Vehicle Routing Problems. IEEE Transactions on Cybernetics.
Zhao, J., Mao, M., Zhao, X., & Zou, J. (2020). A hybrid of deep reinforcement learning and local search for the vehicle

routing problems. IEEE Transactions on Intelligent Transportation Systems.

Proceedings of the 10th Annual World Conference of the
Society for Industrial and Systems Engineering,
2021 SISE Virtual Conference
September 23-24, 2021

ISBN: 97819384962-1-9 025

