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Abstract:
In this study, we utilized machine learning algorithms to predict pilot workload based on physiological, cognitive,

and eye-tracking data collected from 7 pilots performing tasks in an unclassified F-35 flight simulator. We used the Bedford
Workload Rating Scale (BWRS) to validate the high workload conditions induced during the simulated flight scenarios. We
then trained models and compared their performance at predicting high workloads. Our results showed model performance
was higher when classifiers were trained on individual pilots instead of on a group of pilots. We found that changes in Percent
Change Pupil Size (PCPS), an eye-tracking measurement, were particularly noticeable in high vs. low-workload scenarios. This
metric emerged as the most significant factor in distinctly difficult situations. These findings suggest a shift towards personal-
ized machine-learning models for enhancing human-machine interactions in aviation through biometric and PCPS monitoring.
Future work should examine a more diverse set of tasks, validated by study subjects, to assess the potential benefits of incorpo-
rating artificial intelligence (AI) assistance systems into the cockpit.
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1. Introduction

According to the Federal Aviation Administration, 80% of aviation mishaps are caused by human error, often linked to
factors such as insufficient sleep, distractions, and lapses in attention (Glider Flying Handbook, 2022). These are just a few of
many factors that can contribute to cognitive degradation, lead to human error, and cause mishaps. However, we believe many
of these human-error-related mishaps could be prevented by using artificial intelligence (AI) to determine when pilots need
automated assistance. Furthermore, we believe that monitoring and assessing a pilot’s physiological and cognitive state may
help with determining when pilots are experiencing high workloads. While today’s 5th generation fighters boast sophisticated
capabilities to monitor the aircraft state and subsystem performance, there exists a noticeable gap in the biometric monitoring
of pilots. This gap underscores the pressing need for a paradigm shift in aviation technology, with experts advocating for the
integration of systems that can monitor pilots’ physiological state before, during, and after flight (National Commission on
Military Aviation Safety, 2020). Incorporating biometric monitoring systems into the cockpit holds the promise of proactively
identifying cognitive impairment or task saturation, enhancing the potential for improved human-machine teaming between
pilots and automated systems.

In a broader military context, some senior Air Force leaders envision a trajectory similar to the development of nuclear
weapons and precision-guided munitions, with advances in AI and autonomy emerging as the next military offset to ensure U.S.
military superiority in future conflicts. Air Force General Paul Selva, vice chairman of the Joint Chiefs of Staff, emphasized that
the future of the United States air power dominance hinges on our military’s ability to integrate advances in AI and autonomy
into military systems and processes (Deputy Defense Secretary, 2016). Likewise, the U.S. Air Force 2030 Science and Tech-
nology Strategy states that research in cognitive science, data presentation, and human-machine interfaces is vital to optimize
human-machine teaming performance (U.S. Air Force, 2019). Lastly, the current Chief of Staff of the Air Force contends that
collaboration with industry partners is critical to accelerating change and innovation (Brown, 2020). These strategic visions
require an ability to mitigate human error in high-stakes environments through the integration of AI assistance. By focusing on
the development and application of machine learning algorithms to timely detect workload-induced cognitive shifts in pilots,
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our work seeks to determine the optimal moments for AI intervention, and as a result, augment decision-making processes and
operational efficiency. This approach not only advances the goal of reducing human error but also contributes to the broader
aim of optimizing human-machine teaming performance in critical military operations.

Our capstone team partnered with Lockheed Martin’s SkunkWorks human systems architects to explore the feasibility
of using machine learning algorithms to detect when pilots are experiencing a high workload during flight simulation training.
Our study had three primary objectives: to examine how high workload and challenging tasks affect subjective ratings, assess the
impact of increased cognitive workload on biometric markers (such as brain oxygenation, heart rate variability, and PCPS), and
evaluate the performance and explainability of classifiers in predicting pilot workload using PCPS, cognitive, and physiological
data. Although past studies have demonstrated some success using physiological measures to detect changes in pilot workload,
differences in experimental design have made it unclear if machine learning performance can generalize across a diverse set
of tasks and maneuvers (Charles & Nixon, 2019). Additionally, few studies have focused on cognitive measures as a measure
of workload. To address this gap, Skunk Works Labs collected physiological and cognitive metrics—specifically, heart rate
variability (HRV), percent change in pupil size (PCPS), and brain activity—from 7 pilots during high and lowworkload scenarios
in an unclassified F-35 flight simulator. We then evaluated the efficacy of several machine learning algorithms trained on this
data, with the primary objective of predicting the binary variable of workload intensity: high or low.

We found that classification performance was higher when the models were trained on data from individual pilots
instead of aggregated data from the group of pilots. Consistent with prior research, we found that the PCPS was an important
feature in predicting workload (Murata & Iwase, 1998). Our analysis suggests that future pilot sensing research may wish to
include PCPS measures and that classifiers may perform better when using an individualized approach for model training.

2. Materials and Method

The analysis presented here uses data collected from pilots (N=7) who participated in a Human-in-the-loop (HITL)
assessment conducted by Lockheed Martin during the summer of 2023. The following section describes the experimental
design, procedure, and our analysis approach.

2.1. Participants

A total of 8 participants were recruited for the study. However, one participant was excluded from the analysis due to
their awareness of the study design, introducing a potential source of bias to their results. To diversify results, Lockheed Martin
recruited pilots with different flying backgrounds; two had experience with flying F-35s, three had experience on other fighter
platforms such as F-16s, F-15s, and F-18s, one pilot had no fighter experience but had experience flying instruments, and one
pilot who had flown multiple platforms.

2.2. Procedure

Pilots conducted flights in an unclassified development F-35 cockpit simulator lab with the scenario set in Nellis Air
Force Base, Nevada. Pilots were fitted with sensors to collect biometric data including heart, brain, and eye-tracking data. Each
session took ten to fifteenminutes. Pilots were first briefed on the purpose of the experiment and how to properly don and doff the
Functional Near Infrared Spectroscopy (fNIRS) device to measure the brain oxygenation variables and the Electrocardiogram
(ECG) device to measure heart rate variability. The fNIRS is a field-deployable noninvasive optical brain imaging technology
that measures cerebral hemodynamics in response to sensory, motor, or cognitive tasks (Harrison et al., 2014, 2013). The pilots
were then briefed on the scenarios while their physiological reading output on all devices was being monitored. The participant
then started the experiment by conducting a calibration flight, where they flew without any direction for at least five minutes to
collect baseline data. After the baseline data was collected, the simulation was stopped so the first scenario could begin.

To ensure quality data collection, the pilots were briefed to treat any abnormalities or emergencies they would experi-
ence in the simulation as they would in real life. The first scenario was designed to be a low-workload scenario and consisted
of simple tasks including taking off, flying a specified route, and landing. Between the two scenarios, the pilot was given a
Bedford Workload Rating Scale (BWRS) and China Lake Situational Awareness (CLSA) scale to complete (Hicks, Durbin,
Morris, & Davis, 2014). The BWRS requires pilots to subjectively rate the level of workload with the amount of spare capacity
they have available to perform other tasks on a 10-point scale (1 = workload insignificant, 10 = tasks abandoned). The second
scenario was designed to be a high-workload scenario. This scenario consisted of tasks to induce stress on the pilot and imposed
very low visibility outside the cockpit, so the pilots had to fly the approach using instruments. The Tactical Air Navigation
(TACAN) failed partway into the approach for about 30 seconds to induce stress. When the TACAN came back online, the
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pilots completed the airway approach and landed. The experimenters gave the pilots another BWRS and CLSA to complete at
the end of the second scenario.

2.3. Measures

Our study focused on mental workload (MWL). MWL is the level of arousal or effort combined with mental capacity
or cognitive resources used in completing a task (Dussault, Jouanin, Philippe, & Guezennec, 2005). This is different than task
load because it includes the subjective responses of a pilot related to the task load. Task load can influence MWL based on the
difficulty of the task and the number of times the task needs to be completed, but it is not the only factor that is involved in
measuring MWL (Kakkos et al., 2019; Young, Brookhuis, Wickens, & Hancock, 2015). If a task is complex, it may increase
MWL until a person practices and becomes familiar enough to complete it (Matthews, Reinerman-Jones, Barber, & Abich,
2015).

Physiological, ocular, and cognitive measurements helped us create a detailed understanding of the pilots’ mental
workload. Heart Rate Variability (HRV) measures include low-frequency to high-frequency ratios (LF/HR ratio), pNN50, and
root mean square of successive differences between normal heartbeats (RMMSD) (Shaffer & Ginsberg, 2017). Ocular measures
include pupil size, blink rate, and blink duration. PCPS has been studied in relation to MWL before, and pupil diameter change
has been observed to be higher during high workload situations (Causse, Sénard, Démonet, & Pastor, 2010; Kramer, 1990).
Another way to detectMWL is through the measurement of oxygenated (HbO2) blood in the brain (Causse, Chua, Peysakhovich,
Del Campo, & Matton, 2017). Studies have found a relationship between blood oxygenation and mental workload. Overall,
increasing the workload will increase the HbO2, making HbO2 a viable measure of MWL (van Weelden, Alimardani, Wiltshire,
& Louwerse, 2022). Our final dataset included thousands of observations per minute for each pilot, documenting the shifts
in physiological and cognitive responses between low and high workload scenarios of the simulated flights. After confirming
the accuracy of our data labels, we used machine learning algorithms to predict the binary variable of high vs. low workload
scenarios.

2.4. Analysis Approach

To determine if tasks assigned to pilots during the experiment were accurately labeled, we first compared the sample
means of the Bedford scale ratings for the low and high workload scenarios. We hypothesized that the Bedford scale scores
would be significantly higher for the high workload scenarios. Then, we compared the sample means of each measure to
determine if there were differences in physiological measures between the two scenarios. We hypothesized that in the high
workload scenario, heart rate variability measures would be lower (lower LF/HF ratio, pNN50, and RMSSD), there would be
larger changes in PCPS, and there would be increased brain oxygenation (higher HbO2 delta).

To evaluate the performance of classifiers in predicting pilot workload, we compared two training methods across
multiple models: a generalized method that trained models on the full dataset, and an individual-centered approach that focused
on personalizing predictions for each pilot. The generalized approach trains one classifier using combined data from all pilots
to identify common workload indicators, while the individualized approach uses the same data to train individual classifiers for
each pilot, which results in tailored models that are sensitive to each person’s unique physiological reactions. Both approaches
predicted a binary response variable indicating a ”Low” or ”High” workload.

3. Results

After analyzing both qualitative and quantitative data, we found a significant difference between the low and high
workload scenarios that confirmed the accurate labeling of the two scenarios. This confirmation gave us confidence to use
these labels effectively when training machine learning algorithms. Pilots agreed that the high workload scenario was more
challenging but failing the TACAN did not affect their situational awareness (Table 1). This observation was supported by
the difference in mean Bedford scale ratings between the scenarios. Specifically, the mean Bedford scale ratings for the high
workload scenario (M = 7.14, SD = 2.48) were significantly higher (t = 4.63, p = .0006) than those for the low workload scenario
(M = 2.71, SD = 0.49). In the CLSA, one pilot scored the TACAN failure as having very good situational awareness, four pilots
said they had good situational awareness, and two pilots said they had adequate situational awareness. This shows that while the
TACAN failure increased the difficulty of the flight task resulting in increased mental workload, it did not significantly impact
the pilots’ situational awareness.

We then compared the physiological responses in the two scenarios and found noticeable differences in the pilots’
physiological and cognitive reactions to different levels of workload. By conducting 2-sample t-tests, we closely examined
the average biometric data for high and low workload scenarios. We found significant variations in PCPS and HbO2 changes
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between the scenarios for almost all pilots, with a large t-test statistic and an extremely low p-value of less than 0.001. The
difference in HbO2 might be more pronounced in a real flight scenario, as suggested by a previous study that found that greater
differences in HbO2 when measured in a real flight versus a simulator (Gateau, Ayaz, & Dehais, 2018). We did not observe
large differences in the HRV measures, perhaps because the simulated environment failed at replicating real-world conditions.

Table 1: Bedford Workload Rating Scale (BWRS) and China Lake Situational Awareness Scale (CLSA) Ratings by Pilot. Pilots
agreed that the high workload scenario was more challenging but failing the TACAN did not affect their situational awareness.

Workload Rating
Pilot Scenario A Scenario B Situational Awareness Rating
1 3 9 very good
2 3 4 good
4 2 6 good
5 3 5 adequate
6 2 10 good
7 3 10 adequate
8 3 6 good

M (SD) 2.71 (0.49) 7.14 (2.48)

Following the significant differences observed in physiological measures between high and low workload scenarios,
we explored the predictive capability of models trained on these data. To do this, we compared generalized and individualized
modeling approaches to see how well they could classify these scenarios based on pilot physiological and cognitive data. As
summarized in Table 2, the individualized approach, particularly using the Random Forest model, demonstrated superior per-
formance over the generalized approach. The Random Forest model achieved high metrics in accuracy (0.91 ± 0.05), precision
(0.91 ± 0.05), and recall (0.93 ± 0.04), suggesting robustness in predicting workload levels effectively.

Table 2: Performance metrics of individualized and generalized models in predicting pilot workload. Individualized approaches,
particularly using the Random Forest model, demonstrated superior performance over the generalized approaches.

Approach Model Accuracy
M (SD)

Precision
M (SD)

Recall
M (SD)

Individualized

Random Forest .91 (.05) .91 (.05) .93 (.04)
KNN .90 (.06) .89 (.05) .92 (.04)
SVM .86 (.08) .85 (.09) .90 (.05)
Decision Tree .86 (.07) .86 (.08) .89 (.07)
Logistic Regression .79 (.11) .80 (.11) .79 (.10)
LDA .77 (.10) .78 (.10) .79 (.08)

Generalized

SVM .76 (.09) .77 (.10) .80 (.08)
Random Forest .76 (.11) .74 (.11) .85 (.11)
Decision Tree .73 (.11) .74 (.12) .77 (.13)
KNN .72 (.08) .73 (0.09) .75 (.07)
Logistic Regression .69 (.09) .72 (.13) .74 (.15)
LDA .66 (.08) .70 (.13) .74 (.13)

Baseline Dummy Classifier .51 (.07) .58 (.06) .57 (.08)

Lastly, plotting a feature importance plot allowed us to understand how the changes in workload were reflected in
the different predictive features. Percent Change Pupil Size (PCPS) ranked highest among the predictive features of workload
changes for some pilots. The data showed significant individual variations, as PCPS did not remain the most predictive feature
when pilots failed to observe a large difference in difficulty between scenarios. This variation might be due to PCPS’s sensitivity
to light and other external influences, which could account for its fluctuating predictive power. This underscores PCPS’s value
in reflecting workload, while also pointing to the importance of individual variability in response to task demands.
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4. Discussion

Our goal was to assess the effectiveness of machine learning algorithms in making predictions of increased mental
workload in pilots. Our findings suggest that the variation in pilots’ PCPS was the most significant measurement, hence,
incorporating PCPS tracking could enhance future pilot sensing research. Furthermore, our results suggest that classifiers might
yield improved performance by adopting a personalized approach to model training.

Our results are consistent with past studies that have shown PCPS to be highly correlated with error rates and indirectly
correlated with increases in workload (Causse et al., 2010; Recarte & Nunes, 2003). However, our results have some limitations
due to how the PCPS data was collected. During the data analysis phase, correlations between the pilot’s verbal statements and
PCPS data showed there could be biases where the pilot is looking down at their instruments, and the RandomForest is predicting
PCPS as “looking down.” There are also questions concerning the height of the pilot and the amount of light present in the room
which could both easily affect the validity of the PCPS data recorded, and its use in a non-simulation setting (Mathôt & Ivanov,
2019). Additionally, our analysis approach does not account for temporal aspects of the data. Future studies should explore
time-series-based approaches to detect changes in PCPS trends.

Qualitative feedback from the pilots revealed pilot reservations towards high levels of automation, validating Lock-
heed’s approach to offer customizable automation levels. This suggests the need to balance pilot preferences with the efficacy
and safety of automation, especially when a pilot’s automation preferences might impact operational efficiency. Additionally,
we benefited from collecting pilots’ feedback at the end of the simulation. Our use of Bedford ratings to validate workload-
inducing conditions addsmethodological rigor to our study, offering a validated scenario for future research onMWL in aviation.
In their exit interviews, most pilots stated that an additional warning would increase their mental workload. However, two pilots
stated they wouldn’t mind a warning, saying it may be beneficial if the warning gets gradually louder.

Given the observed individual differences in the PCPS and its varying predictive value, future work should emphasize
the development of personalized models and predict the workload on a Bedford scale. The improved accuracy in predicting
whether the pilots are in a high or low-workload scenario when using models tailored to each pilot’s unique data patterns
suggests a promising direction. Custom models could account for personal baseline measurements, individual physiological
responses, and distinct coping mechanisms to stress. Moreover, incorporating additional context-sensitive variables that affect
pupil size, such as ambient lighting conditions and external stressors, could enhance the robustness of the predictive framework.
Continuous adaptation and learning from each pilot’s data over time could result in a highly nuanced and dynamic model capable
of real-time, accurate workload assessment.

The goal is not only to improve the detection of high versus lowworkload scenarios but also to enhance our understand-
ing of pilots’ workloads in real time. By doing so, we can develop intelligent assistance systems that can dynamically adjust
to each pilot’s current cognitive state. Such systems could offer timely interventions, optimizing task allocation and decision
support, thereby ensuring better performance and safety. Continually evolving these models with more granular data will enable
a more sophisticated and individualized approach to managing pilot workload in various flight conditions.

5. Conclusion

In summary, we found machine learning algorithms performed better when trained and tested on individual results,
rather than generalized results. Additionally, because some pilots are hesitant about incorporating AI assistance in the cockpit,
our results suggest that the ability to down-select the amount of active AI assistance will be crucial for the e-Pilot program
(Higginbotham & Skaff, 2023). These results are significant for a variety of reasons. First, training models on individualized
data produce an AI catered to individual pilots. By focusing on individualized data, the opportunity to refine the model increases
by adding physiological data taken from personal health trackers like smartwatches. Second, the ability to down-select the AI
to the desired amount of assistance is crucial for the wide variety of tasks pilots perform. Some maneuvers, such as take-
off and landing, induce a lower workload than other tasks. Pilots may be more open to using AI assistance in low-workload
environments where they have attention to spare. In higher workload tasks, such as a TACAN failure, decreasing the amount
of assistance could help the pilots better focus on the task at hand while still receiving the most important alerts from the e-
Pilot. Third, if a pilot does not trust the recommendations that the e-Pilot provides, then the program is more a hindrance
than a help and can further distract the pilot from the task at hand. Lastly, future research should reconsider the prediction
methodology. Specifically, predicting a binary variable such as low/high or easy/hard may not be the best way to classify the
pilot’s physiological data. Instead of predicting a binary variable, predicting the value of the Bedford scale, or other similar
scale could yield more accurate results.
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