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Abstract: Emerald Flag is a military exercise hosted by the 96th Test Wing at Eglin Air Force Base, FL. In its latest iteration, 
10 aircraft platforms flew 26 total missions over two days.  The current manual airspace allocation process is not only highly 
time-consuming but also exponentially growing in complexity as more participants join. Our project aims to minimize time 
dedicated to scheduling by developing a 3D Bin Packing Problem (3D-BPP) model limited by unique airspace assignment 
constraints. Our model's objective is to maximize the number of missions per day whilst adhering to safety requirements. 
Utilizing scheduling requests crafted by the 96th, we find the model generates a feasible schedule in 80 fewer man-hours than 
current processes and increases daily mission capacity by 18 missions while maintaining operational safety. In conclusion, the 
3D-BPP model is a flexible, efficient solution for military test range scheduling that is easily adaptable for similar exercises.  
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1. Introduction 
 

Emerald Flag is an exercise held triannually by the 96th Test Wing at Eglin Air Force Base, Florida. Emerald Flag 
provides both civilian and military participants a platform to test new and existing aircraft, weapons, and sensor equipment. 
The exercise takes place over a week, employing two days specifically for execution. Currently, Emerald Flag’s execution 
schedule is created by a planning team that assigns participants to specific airspace and test resources by hand using a 
whiteboard. This planning process includes 3 separate multi-day meetings which ultimately results in an airspace plan. During 
the execution of the exercise, planners track airspace assignments on a physical map using color-coded pins. After three years 
of execution, Emerald Flag has seen a growth from 41 missions flown over the three exercises held in FY2021 to 56 total 
missions in FY2023. While it is currently possible to manually draft a schedule that satisfies all testing requirements, this 
process is challenging and time-consuming. As more aerial participants join the exercise, the airspace gets busier, making the 
process increasingly intricate. Each test mission in the schedule requires careful consideration and conversation to ensure safe 
operation for all parties. Variables include the multiple requirements and restrictions relating to a mission type, aircraft location 
relative to the shoreline, and space from other aircraft, all of which force schedulers to continually reevaluate if each airframe’s 
requirements are met. This manual scheduling process results in possible inefficiencies in schedule creation speed and airspace 
allocation. 

 
1.1 Problem Statement 
 

The 96th Test Wing needs to allocate a portion of airspace in the test range to each exercise participant. However, 
doing so by hand is challenging, time-consuming, and can lead to inefficient schedules. Possible inefficiencies arise in the 
forms of suboptimal airspace allocation and distant aircraft placement, leading to wasted fuel and travel time, among others. 

  
1.2 Related Work 

 
 The assignment problem can be modeled similar to a 3D-BPP except instead of multiple bins to pack we have a single 
bin, representing the entire airspace. Christensen, Khan, Pokutta, and Tetali (2017) provide an overview of the research and 
methods related to bin packing problems. To switch from a manual grid assignment system to the 3D bin packing system, its 
variations must be understood. Martello, Pinsger, and Vigo (1998) explored the different objectives a 3D-BPP can solve. Two 
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types were the Knapsack Loading and Container Packing problem. The Knapsack Loading problem involves selecting which 
subset of a list of items can fit into a single bin to maximize the collective profit. While our problem consists of a single bin 
(i.e., airspace), we must assign all the items (i.e. aircraft) in the bin such that participants are as close to the shoreline as possible 
without violating safety constraints. 

The Container Packing problem is a geometric assignment problem where the objective is to fit a list of multiple 3D 
items into the minimum number of bins at a set volume. George (1992) provided the mathematical foundation needed when 
fitting items that consist of different 3D shapes and introduced the concept of layering the 3D shapes within a singular bin. 
When allocating airspace, each airframe has unique altitude and safety requirements while simultaneously having the ability to 
be staggered in all three dimensions. Lim, Rodriguez and Yang (2005) made advancements with a number of feasible solutions 
for bin packing by including item orientation. The algorithm developed by the team allows for the dimensions of the x,y,z 
coordinates to be interchanged so the boxes have more flexibility in their positioning. As featured in the paper, the ability to 
orient the aircrafts’ volume requirements will provide a more accurate picture of how they may be placed, however our problem 
will only require x and y rotation because z (i.e. altitude) will be treated as a constraint. 

 
1.3 Organization 
 

Our paper begins with the methodology section, where the applications of the data obtained from the 96th Test 
Squadron and our methodological approach are addressed. Following the methodology, the paper transitions into the results 
and analysis section, presenting the outcomes and interpretation of our model. The final section encompasses conclusions, 
recommendations, and avenues for further research. 

 
 

2. Methodology 
 
2.1 Data Collection and Analysis 
  

Communication cards provided by the organizers of Emerald Flag were our primary source of data. CCs provide a 
summary of each participant’s flight information, such as assigned airspace, altitudes, and radio frequencies. We received 11 
out of 18 CCs between exercises 21-1 and 23-3. The seven missing cards either contained un-releasable information or did not 
include a meaningful number of participants. Each was analyzed for the number of participants and missions executed as shown 
in Figure 1 below. 
 
 

 
 

Figure 1: 2023-2: Missions Flown vs. Aircraft Type 
 
 

A noticeable increase in both metrics is evident between each exercise, and organizers have indicated that overbooking 
will eventually become a problem. Separately, a file of the overall airspace coordinates provided the dimensions of the 
exercises' airspace bin. A brief visual analysis of the grid space map was performed to search for assumptions and constraints 
that manual schedulers currently follow that were later accepted or rejected in discussions with the organizers.  
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Additionally, the team attended one of three planning conferences to learn about the scheduling process and the 
exercise lead priorities to better inform model design. While there, Emerald Flag organizers also provided artificial CCs to test 
the robustness of our model. These CCs cover a variety of test cases, ranging from a standard number to an abnormally high 
number of participants. 
 
2.2 Model Methodology 
 
 Our model falls under the umbrella of the 3D-BPP; however, additional complexities are considered to accommodate 
the safety requirements of airspace allocation. Plainly put, the 3D-BPP solves the issue of efficiently packing boxes inside bins 
to minimize the number of bins required. Instead of multiple bins, our model packs boxes (i.e. aircraft flight zones) into a 
singular bin (i.e. exercise airspace) that cannot be freely expanded. For the purposes of Emerald Flag, minimizing wasted space 
inside the bin is correlated with maximizing the number of missions flown. The model addresses two key issues: given a list of 
participants, is there a feasible allocation of airspace and where will the participants be placed? The primary measure of 
performance (MOP) will be the daily flying mission capacity. The distance between each participant and shoreline, the speed 
of the allocation process, and the reduction in time required to produce the execution schedule compared to current methods 
will be secondary MOPs. Ultimately, the aim is to reduce time spent on scheduling while producing a feasible airspace 
allocation that maximizes these MOPs. 

In the model, each object will be depicted by a rectangular prism, representing a block of airspace. The dimensions of 
each block are measured in tens of thousands of feet. Aspects of both the aircraft and the participant’s requirements will affect 
the size of the block. Model constraints include distance from the south coastline, minimum and maximum altitude, and 
international water requirements. Mathematically, the entire model is represented by the following variables, objective function, 
and constraints: 
 
Parameters: 

𝐿, 𝑊, 𝐻 :  length, width, and height dimensions of airspace 
𝑛 :  number of total boxes, where boxes represent an individual mission 
𝐵:  set of all boxes ሼ0, 𝑛 െ 1ሽ 
𝑙௜, 𝑤௜, ℎ௜ :  length, width, and height dimensions of box i 
𝑐௜ :  min operating distance from coastline, represented by the x-axis 
𝑎௜ :  min flying altitude of box i 
𝑏௜ :  max flying altitude of box i 
𝑢௜ :  binary indicator for if box i represents a no fly zone (1 if NFZ) 
𝑑௜, 𝑒௜, 𝑓௜ : predetermined x,y,z coordinates for location of NFZ i 

 
Decision Variables: 

𝑥௜ :  x-location of box i’s bottom northwest corner    𝑥௜ ∈ ℝ     s.t.    0 ൑ 𝑥௜ ൅ 𝑙௜ ൑ 𝐿 
𝑦௜:  y-location of box i’s bottom northwest corner    𝑦௜ ∈ ℝ     s.t    0 ൑ 𝑦௜ ൅ 𝑤௜ ൑ 𝑊 
𝑧௜:  z-location of box i’s bottom northwest corner    𝑧௜ ∈ ℝ     s.t.    0 ൑ 𝑧௜ ൅ ℎ௜ ൑ 𝐻 
𝑜௫,௜௝:  overlap indicator between boxes i and j on x-axis   𝑜௫,௜௝ ∈ ሼ0,1ሽ     where    𝑖, 𝑗 ∈ 𝐵 
𝑜௬,௜௝:  overlap indicator between boxes i and j on y-axis   𝑜௬,௜௝ ∈ ሼ0,1ሽ     where    𝑖, 𝑗 ∈ 𝐵 
𝑜௭,௜௝:  overlap indicator between boxes i and j on z-axis   𝑜௭,௜௝ ∈ ሼ0,1ሽ     where    𝑖, 𝑗 ∈ 𝐵 
𝑟௜:  binary indicator for if box i is rotated (0 not rotated)   𝑟௜ ∈ ሼ0,1ሽ     where    𝑖 ∈ 𝐵 

 
Mathematical Formulation: 

 Min ∑ ሺ𝑦௜ ൅
ሺଵି௥೔ሻ⋅௪೔ା௥೔⋅௟೔

ଶ
൅ 𝑧௜ ൅

௛೔

ଶ
ሻ஻

௜ୀ଴         (1) 

Subject to: 
 

0 ൑ 𝑥௜ ൅ ሺ1 െ 𝑟௜ሻ ⋅ 𝑙௜ ൅ 𝑟௜ ⋅ 𝑤௜ ൑ 𝐿    ∀ 𝑖 ∈ 𝐵     (2) 

0 ൑ 𝑦௜ ൅ ሺ1 െ 𝑟௜ሻ ⋅ 𝑤௜ ൅ 𝑟௜ ⋅ 𝑙௜ ൑ 𝑊   ∀ 𝑖 ∈ 𝐵     (3) 

0 ൑ 𝑧௜ ൅ ℎ௜ ൑ 𝐻      ∀ 𝑖 ∈ 𝐵     (4) 

𝑥௜ ൒ 𝑥௝ ൅ ሺ1 െ 𝑟௝ሻ ⋅ 𝑙௝ ൅ 𝑟௝ ⋅ 𝑤௝ െ 𝐿 ⋅ 𝑜௫,௜௝   ∀ 𝑖, 𝑗 ∈ 𝐵, 𝑖 ് 𝑗     (5) 

𝑦௜ ൒ 𝑦௝ ൅ ሺ1 െ 𝑟௝ሻ ⋅ 𝑤௝ ൅ 𝑟௝ ⋅ 𝑙௝ െ 𝑊 ⋅ 𝑜௬,௜௝   ∀ 𝑖, 𝑗 ∈ 𝐵, 𝑖 ് 𝑗     (6) 

𝑧௜ ൒ 𝑧௝ ൅ ℎ௝ െ 𝐻 ⋅ 𝑜௭,௜௝     ∀ 𝑖, 𝑗 ∈ 𝐵, 𝑖 ് 𝑗     (7) 
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𝑜௫,௜௝ ൅ 𝑜௬,௜௝ ൅ 𝑜௭,௜௝ ൑ 2     ∀ 𝑖, 𝑗 ∈ 𝐵, 𝑖 ് 𝑗    (8) 

𝑧௜ ൒ 𝑎௜       ∀ 𝑖 ∈ 𝐵     (9) 

𝑧௜ ൅ ℎ௜ ൑ 𝑏௜      ∀ 𝑖 ∈ 𝐵     (10) 

𝑦௜ ൒ 𝑐௜       ∀ 𝑖 ∈ 𝐵     (11) 

𝑥௜ ൌ 𝑑௜, 𝑦௜ ൌ 𝑒௜, 𝑧௜ ൌ 𝑓௜     ∀ 𝑖 ∈ 𝐵 if 𝑢௜ ൌ 1    (12) 
 

The objective function (1) seeks to minimize the distance between the geometric center of each participant’s airspace 
zone and the southern coastline (i.e. x-axis). The y variable measures box i’s distance from the coastline. The model is then 
bounded by the following constraints. Equations (2-4) ensure the entire volume of box i remains within the container 
dimensions. (5-7) ensure box i is placed beyond the end of box j in all three dimensions. (8) works in conjunction with the 
previous three constraints, preventing boxes from overlapping in each dimension. Constraint (9) ensures box i is located above 
its altitude floor, while (10) ensures the height of box i does not exceed its altitude ceiling. Constraint (11) ensures that box i is 
placed beyond its minimum operating distance from the coastline. Finally, constraint (12) ensures NFZ boxes are set at their 
predetermined locations. 

To translate the mathematical formulation into a computational framework, we leveraged Python and the Gurobi 
Optimizer Engine. Data inputs in Excel undergo preprocessing before Gurobi executes optimization and generates an output. 
This model is built on the following assumptions with regard to the missions and their respective aircraft. To mitigate real-
world complexity, factors including weather, maintenance issues, and airspace interference are presumed negligible. 
Additionally, aircraft will not leave the airspace they are assigned except for entry and exit at the start and end of the exercise. 
Each rectangular airspace will not intersect with any other aircraft’s airspace. Aircraft will take off with enough fuel required 
for the full test window. All participants listed will be assigned airspace unless it is infeasible, in which case the user will decide 
which participant to remove from the list. Finally, to better represent the true available airspace, NFZs were introduced through 
the use of ghost boxes, or airspace blocks associated with hard constraints that force them into their respective locations. Thus, 
this helps prevent aircraft placement within NFZs above public lands. 

Following completion and implementation of the initial algorithm, we tested the model on small samples of up to six 
aircraft to guarantee functionality as shown in Table 2. With each iteration of the model, additional constraints and test cases 
were performed to ensure the model properly executed our mathematical formulation.  

 
 

Table 2. 3D-BPP Model Input 
 

 
 
 

3. Results and Analysis 
 

Given a list of participants, our model successfully addresses whether it is feasible to assign all participants and if so 
outputs each participant's designated airspace. Table 3 displays the model’s allocation output of Table 2’s participant roster. 
Each position output is the bottom northwest corner of each aircraft’s allocated flight zone and rotation addresses the boxes’ 
dimensions in the x and y-axis. Figure 2 provides our 3D visualization of the model’s feasible airspace allocation. Axes are 
measured in tens of thousands of feet. 
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Table 3. 3D-BPP Model Output  
 

   
Figure 2. 3D Visualization of Airspace Allocation

 
 
The model also provides 2D visualizations of the output, divided into three altitude ranges. They are 0-10, 11-20, and 

21-60 thousand feet. These simply provide users an additional perspective of the airspace allocation.  
 
 

 
 

Figure 3. 2D Visualization of Airspace Allocation (Altitude 21,000-60,000 ft.) 
 
 

The next step was evaluating our model’s scheduling efficiency by inputting various larger test cases including 
historical data from Emerald Flag exercises and artificially generated scenarios provided by organizers. Our sensitivity analysis 
began with estimating the average distance participants are from the coastline or the international water threshold. To conduct 
the average distance participants are from their preferred origin, airspace volumes were categorized into four ranges. We 
compiled the allocation results from seven test cases including a total of 80 aircraft, shown in Table 4 below. 

 
 

Table 4. Average Distance vs. Aircraft Volume 
 

 
 
 

This analysis validates our model's efficiency in positioning aircraft close to their preferred locations. However, it also 
reveals distinctive airspace allocation patterns. Our model demonstrates a pattern of clustering smaller volume boxes closer to 
the coastline, while larger boxes are consistently positioned farther away. We attribute this pattern to the formulation of our 
objective function. By doing so, it ensures that aircraft of varying sizes and operational needs are accommodated effectively, 
while also maintaining a fluid and orderly airspace structure. 
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One crucial aspect of the evaluation was measuring time required to generate outputs for larger scenarios. Smaller 
scenarios up to 6 aircraft averaged 0.8 seconds. However, larger efficiency gains come into play with larger samples. Even 
with the increased complexity, the model produced an output within an average of 5.5 seconds if feasible. The impact is 
substantial, reducing time spent on draft airspace allocations by an estimated 80 work-hours. 
 We also explored an option where the size of airspace boxes was adjusted. This analysis aimed to identify the average 
increase that could be accommodated during the exercise without adjusting the outputted airspace design. We initially 
established a baseline by analyzing the current allocation patterns and safety margins. Our findings indicated that, on average, 
airspace boxes could be expanded by up to 19% without impinging on adjacent airspace allocations. This expansion was more 
feasible in areas further from the coastline, where the density of aircraft was lower and the risk of conflict less acute. In contrast, 
near the coastline, where airspace is at a premium, the potential expansion was limited to around 4%. A baseline margin of 
15% also indicates a built-in amount of safety margin between airspace allocations. 

To quantify this, we ran simulations with artificially increased box sizes in varying increments, from 5% to 20%, 
while monitoring for loss of model feasibility. The results showed that increasing box sizes beyond 17% led to a significant 
increase in infeasibility across various scenarios provided by organizers. Therefore, we concluded that a safe and efficient 
expansion could be achieved within the 4% to 16% range, depending on existing airspace utilization inside the scenario. This 
adjustment in box sizes could allow for a more flexible allocation of airspace, especially during high-density flight operations. 
 
 

4. Conclusions, Recommendations, and Future Research 
 

Our study demonstrates the successful implementation of a 3D-BPP model to optimize airspace allocation for the 
Emerald Flag military exercise. By minimizing wasted airspace and efficiently positioning aircraft, our model significantly 
reduces the time and effort required for scheduling, yielding a feasible schedule in 80 fewer work-hours compared to current 
manual processes. Such a reduction has ripple effects across the entire process, allowing organizers more time to focus on fine-
tuning allocations and analysis of results. Furthermore, the model enables the expansion of participant capacity while assuring 
safety considerations during execution. Adoption of a 3D-BPP model will allow Emerald Flag and other department and joint 
exercises to scale in capacity while maintaining safety considerations. By optimizing distance from a priority axis, exercise 
planners will be able to ensure the maximum amount of time-on-station during execution. This will reduce overall event costs 
and increase the amount of data that can be collected. 

However, it must be remembered that this model does not solve the problem of hour-by-hour scheduling, 
communication frequency assignment, and other tasks required for Emerald Flag. Rather, it only serves as a tool for the 
participants’ airspace assignments. Limitations exist in the forms previously listed, as well as inabilities to recognize human 
error and inconsistencies in data inputs that could compromise the integrity of the model and its outputs. 

To further refine the model, we suggest enhancing the representation of coastal zones to better account for their 
complex geometry. Additionally, implementing a more user-friendly interface within the model could improve data input 
reliability and user interaction, thereby increasing overall efficiency and accuracy. 

Future research should focus on expanding the model’s functionality, including the integration of an additional bin to 
represent the second execution day during the exercise. Introducing built-in participant removal functionality could offer users 
greater flexibility in adjusting schedules without compromising the overall feasibility of the allocation. Implementing a function 
to lock specific boxes and rerun the model without altering locked selections could streamline the scheduling process by 
allowing organizers to prioritize certain participants while adjusting others. To better visualize airspace allocations, overlaying 
the 2D and 3D visualizations onto actual geographic maps could provide a more intuitive and practical tool for exercise 
planning. Together, these enhancements could improve the model's adaptability and effectiveness in addressing the nuanced 
demands of military exercise planning.  
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