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Abstract: The distribution of F-35 parts across supply depots can have drastic effects on costs associated with urgent demand 
requests. Given the fact that F-35s are located around the world, having parts located near F-35s when they need them can save 
a significant amount of time and money. By identifying similar groups of F-35s, Lockheed-Martin can improve their 
distribution plan, leading to reduced costs, fewer sustainability issues, and decreased downtime for the fleet. Our team explored 
cluster modeling to find optimal groupings of F-35s based on part similarity across various functional logistics control numbers 
(FLCNs). Specifically, K-Means clustering and Jenks Natural Breaks Optimization - a one-dimensional equivalent to KMeans 
were utilized to group F-35s given a predefined number of clusters. We found that clusters were not similar in size when 
limiting the number of clusters to whole numbers between 2 and 4, but observations within had fairly similar ‘commonality 
scores.’ The team’s work injects commonality into daily supply chain operations that previous findings did not consider. We 
recommend that Lockheed-Martin utilize the clusters generated to improve sustainability and readiness across the F-35 fleet 
and reduce costs. 
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1. Introduction 
 
Lockheed-Martin, a global aerospace and defense company, is the primary contractor for the United States' F-35 

Lightning II Joint Strike Fighter program, a pioneering initiative shaping modern military aviation. The United States 
Department of Defense plans to acquire approximately 2,500 F-35 fighters with a total life cycle cost of $1.7 trillion; this makes 
it one of America’s most expensive programs. F-35 fighters are non-homogenous and complex with a variety of configurations 
and mission sets across the fleet, convoluting part supply planning. Given the uniqueness of F-35s across the fleet, determining 
the best locations to store parts is challenging. Identifying groups of F-35s (i.e. “grouping” them) that share specific parts could 
help inform part distribution decisions by Lockheed-Martin. While cost savings produced from commonality may have 
motivated the joint acquisition by the United States, opportunities remain for the program to employ techniques that leverage 
commonalities and reduce costs. The current grouping of the F-35 fleet across the joint force and international partners – by 
training, mission set, or other present-day arrangements – may be contributing to complications such as costly urgent buy 
requests, lack of inventory, increased maintenance, and readiness setbacks. Though grouping aircraft by commonality in place 
of the current approach can save billions of dollars over the lifespan of the F-35 program, research has not yet identified how 
aircraft should be grouped to minimize costs. In summary, Lockheed-Martin's mission to advance technology and its 
commitment to commonality in the F-35 program converge in the imperative to enhance the grouping of F-35 tails, generating 
substantial long-term cost savings and significantly improving the efficiency of sustainment efforts, aligning perfectly with 
Lockheed-Martin's mission to deliver advanced technology for the betterment of humanity. 

The current arrangement of the F-35 fleet across the joint force and international partners contributes to complications 
such as costly urgent buy requests, lack of inventory, increased maintenance, and readiness setbacks. In the existing system, 
there is a relationship between tail numbers (e.g., functional logistics control number – or FLCN) and part numbers but not 
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every tail number is linked to a specific part number. The current approach involves counting the occurrences of each part 
across different tail numbers for a given FLCN. For instance, if there are 50 tail numbers associated with one part and 20 tail 
numbers with another part, the system assumes the most common part applies to all tail numbers within that FLCN. This 
method results in urgent buy requests, higher costs, and increased downtime. It can be described as a "naive" approach, where 
the company sends the most common part in an FLCN to all F-35s even if that part is unfunctional in certain aircraft tails. This 
method may not be the most cost-effective way to manage this capability. Each of these aircraft are unique in the sense that 
they each have a variety of distinct parts and FLCNs. FLCNs are identifiers for different sets of components and resources 
required for specific functions of an aircraft. Each F-35 tail has a set number of combinations of FLCNs and parts; while some 
share common combinations, the majority are unique to tails. For example, one F-35 with a simple mission set, such as training, 
may have 1794 FLCNs and 1640 parts. Another F-35 with a more complex mission set, such as testing and research, may have 
up to 1842 FLCNs and 2100 parts.  

To improve the system, we need to challenge the assumption that the most common part applies universally to all tail 
numbers: the current “naive” approach utilized by Lockheed-Martin. This shift aims to minimize expensive urgent buy requests. 
Instead, we explore an alternative form of overlap that considers the FLCN and part precedence. Part precedence is a measure 
of utility, with a higher part precedence number indicating how effectively a part would operate within a specific FLCN. When 
planning for spare parts, the strategy is to group them in the most common configuration, covering the highest number of tails. 
However, it becomes impractical to plan at extremely detailed levels. The key is to enhance coverage by introducing a single 
"common" configuration that does not precisely match any specific tail number. This approach seeks to optimize spare planning 
by broadening the scope and reducing the need for minute, tail-specific details. 
 
1.1 Problem Statement 
 

Lockheed-Martin currently lacks a method for identifying groups a F-35s that are similar to one another from a parts 
perspective. Having such a capability enables them to improve the distribution of parts across the F-35 fleet. 

 
1.2 Related Work 

 
Previous scholarly works provide valuable insights into the concepts related to clustering, commonality analysis, 

focusing and supply chain management that can be applied to the current situation with the F-35 fleet. To start, the team looked 
for articles detailing real-world problems like Lockheed-Martin’s. Feser and Bergman (2000) explore interregional industrial 
transfer and sensitivity analysis in identifying industrial clusters. Lorentz, Hilmola, Malmsten, and Singh (2016) analyze how 
macroeconomic shocks affect subject matter experts (SMEs) using cluster analysis. Trappey, Trappey, Chang, and Huang 
(2010) provide a clustering approach for automobile logistics services. These papers provide evidence of clustering techniques 
used in industrial settings, similar to how Lockheed-Martin could use the methods. 

The next set of scholarly sources talk specifically about the technical language of bin-packing problems, clustering 
analysis, optimization, and more. Lodi, Martello, and Vigo (2002) discuss advances in two-dimensional bin-packing problems, 
offering both exact algorithms and heuristic approaches for optimization. The articles by Gates and Ahn (2019), Lawrence Dale 
Thomas (1991), Cedeño and Gürsel (1997), and Changpinyo, Liu, and Sha (2013) delve into clustering analysis and similarity 
measures, offering methods for assessing clustering results and finding commonality between components. These articles 
provide the technical knowledge needed to develop an appropriate model. 

The final theme of papers the team explored related to background and sustainability within the F-35 industry. 
Ingenbleek and Krampe (2023) examine resource allocation in the supply chain and its influence on sustainability. These 
reviews guide the development of clustering algorithms and commonality analysis for the F-35 project, offering valuable tools 
and methods. Additionally, the articles by Albon (2019), Jans, Degraeve, and Schepens (2008), Rand (1971), Thonemann and 
Brandeau (2000), and the U.S. Government Accountability Office reports provide crucial background information on the F-35 
aircraft, its maintenance challenges, and the need for sustainment improvements. These reviews inform the context of the F-35 
project and the importance of optimizing its parts and sustainment processes. Finally, Sharma and Bhat (2014) offer insights 
into supply chain risk management in the automobile industry, which can be adapted to the F-35 project. Overall, these literature 
reviews offer a wealth of knowledge and methods that can be applied to optimize clustering and commonality analysis for the 
F-35 aircraft and its supply chain. 
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2. Methodology for Data  
 

Given the previous work that Lockheed-Martin has completed for F-35 sustainment, all data collection processes had 
been completed. The data consisted of a large dataset with five distinct rows: tail key, phase key, FLCN key, part number 
(labeled as REFNUM_key in the data), and goodness of fit of a part with a particular FLCN (defined as part precedence). The 
tail key column is a string that represents a certain F-35. The actual nature of the aircraft is classified, so the dataset declassifies 
the F-35s by associating it with a random number. Phase key is also a string of numbers, but its presence serves no purpose for 
commonality analysis. The FLCN key is a declassified string of numbers representing a system within the aircraft. Each FLCN 
has a set number of parts that have varying levels of utility associated with that specific system. The utility associated with 
each part/FLCN combination falls under the ‘goodness of fit’ column – the only integer type within the data frame. In this 
context of the data, a higher part precedence value means that a part works better within an FLCN than a part with a lower part 
precedence value. Combinations of FLCNs and parts for different F-35 tails allow for meaningful clustering to occur, especially 
when considering the utility of these combinations. All tails share some combinations of FLCNs and parts, whereas certain 
tails have combinations specific to them. 

Before using the data for grouping F-35s, we performed some initial analysis to better understand the data and prepare 
it for future analysis. Identifying key features and attributes of the large dataset is a high priority in initial analysis. Wrangling 
the dataset includes eliminating duplicate part keys, dropping phase key numbers, and identifying one-to-one-to-one 
relationships among tail numbers, FLCNs, and parts. More specifically, for part keys that were duplicated, the team decided to 
keep the observation with higher part precedence. Grouping the dataset by FLCNs and parts reveals one-to-one relationships 
and commonality among F-35 tail numbers in the dataset. Visualizing relationships between tail numbers and part precedence 
gives insight into future optimization and clustering objectives. Another important visual in understanding similarities between 
F-35s relates FLCNs to the number of unique parts associated with that system. Additionally, extrapolating, and visualizing 
statistics on relationships among FLCNs, parts, and part precedence.  
 
 

3. Modeling and Analysis 
 

The primary modeling effort to best find commonalities between F-35s will be clustering algorithms. F-35s can be 
better sorted in a way that factors in parts that work best within them using clustering techniques. Clusters of F-35s will be 
generated by comparing a measure of commonality to the number of FLCNs within a particular tail. Referencing Moscato 
(1976), we define commonality with an entropy-based measure. The equation below details the relative commonality metric 
used. Specifically, pij is a fraction between 1 and the number of tails where a part exists. N represents the total number of tails 
within the dataset. Finally, ni is the number of FLCNs within the data. 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑚𝑚𝑜𝑛𝑎𝑙𝑖𝑡𝑦  ൌ  
ି∑ ೕ ୪୭మ

 
 ೕ స భ ೕ  

୪୭మ ே
   (1) 

 

𝑝  ൌ   ଵ

# ௧ ௧௦ ௪  ௧ ௦ ௦௧
  (2) 

 
Relative commonality was contained within a range from [10, 28] and is associated with each unique FLCN to part 

combination per tail. Given that there are thousands of different FLCNs within the dataset, each with multiple parts, there will 
be multiple ‘commonality’ scores associated with a particular tail. From there, the list of commonality scores is averaged to 
map a singular value to one F-35 tail. The team then compared the singular commonality score, associated with a particular 
aircraft, to the number of FLCNs present in that same plane. Optimal clustering was applied to the data to find F-35s that are 
most like each other. This clustering aims to minimize variance within one cluster while maximizing the distance between other 
clusters. The model flexibility allows the user to input the number of clusters he/she wishes to conduct analysis with; however, 
to find the best number of clusters to work with, the team employs The Elbow Method, finding the inflection point on a graph 
that plots the number of clusters against the ‘total within cluster sum of squares’ (WSS). Below is the equation for WSS where 
the d() function represents the distance equation: 

 

𝑊𝑆𝑆  ൌ   ∑ ∑ 𝑑൫𝑥,  𝑥൯
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௫∈ 
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𝑊ℎ𝑒𝑟𝑒:  𝑥  ൌ  𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑;  𝑥  ൌ  𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡;  𝐶  ൌ  𝑐𝑙𝑢𝑠𝑡𝑒𝑟;  𝑁  ൌ   𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 
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Lockheed-Martin emphasized the importance of finding commonalities and differences amongst FLCNs found in 
every plane. In this specific case, a K-Means clustering algorithm does not work, because the data is plotted in a one-
dimensional space. To find optimal classes of aircraft using the commonality scores that were calculated, the team implemented 
Jenks Natural Breaks Optimization. With this method, the goal was to reduce the variance within classes while maximizing 
variance between classes – similar to that of K-Means, but in a one-dimensional space. The process is iterative, meaning 
calculations must be repeated various times to achieve optimal clusters. The iterative process is meant to find optimal partitions 
that minimize the sum of squared deviations from the class means (SDCM). The sum of squares formula for this method is: 
 
𝑆𝑆  ൌ   ∑ ሺ𝑥  െ  �̄�ሻଶ 

 ୀ ଵ    (4) 
 

The model produced by the team is dynamic for Lockheed-Martin’s needs and can be applied to the full dataset. Each 
unique tail number that is compatible with a part in each FLCN is tabulated. For example: in a dataset containing 193 tail 
numbers, part #21870 is compatible with 88 tail numbers in FLCN #10023. Using this relationship along with the relative 
commonality equation, ‘commonality scores’ were calculated for each tail/FLCN/part combination. Finally, commonality 
scores are averaged across FLCNs. Below is a formula describing average commonality: 
 

𝐴𝑣𝑔.  𝐶𝑜𝑚𝑚𝑜𝑛𝑎𝑙𝑖𝑡𝑦  ൌ   ோ௧௩ ௧௬

௧௧ ிே௦
  (5) 

 
Initial commonality analysis focused specifically on FLCNs that were present in every F-35. The client emphasized 

that most wasted expenditures come from common FLCNs given their current “naive” approach.  Using Jenks Natural Breaks 
Optimization and the commonality scores associated with each F-35 tail, given as an array of values, the team was able to find 
optimal clustering of tails given a pre-defined set of clusters. Lockheed-Martin can see exactly what F-35s are in each cluster 
by pulling from the nested list, labeled as ‘tail_groups’, within our model. This directly answers Lockheed-Martin’s problem 
of grouping F-35's into “commonality” groups. Below is a graph representing the optimal groupings of F-35s based on 
commonality given 3 clusters. This visual gives us an idea of the size of each cluster. 

 
 

 
 

Figure 1: F-35 Groupings Using One-Dimensional Clustering 
 
 

Further analysis involved finding an optimal number of clusters in which the marginal return to decreasing variance 
within each cluster becomes too costly. This work will be done using the Elbow Method – a function that graphs within-cluster 
sum of squares (WSS) against the number of clusters. The team will look at the point in the graph where the function begins to 
level out; theoretically, the function should approach 0. The team found that, after 5 clusters, there is no added benefit to adding 
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additional clusters. Below is the graph of the Elbow Method generated when considering relative commonality amongst the F-
35 fleet: 

 

 
 

Figure 2: Elbow Method for Optimal # Clusters 
 
 

Based on the results of the elbow method, which indicated that 5 clusters would be optimal, we created a graphical 
representation of the optimal tail grouping to visualize the cluster sizes. Subsequently, we compared this representation to a 
model employing 5 clusters using a naïve commonality score. This comparison aimed to elucidate the disparities between 
relative commonality and the naïve approach in clustering. The equation for the naïve approach commonality can be found 
below, alongside the two graphical representations comparing the models. This comparative analysis is vital as Lockheed 
Martin currently relies on a naïve approach, and we seek to assess how our new model can enhance it. 

 

 𝑁𝑎𝑖𝑣𝑒 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝐶𝑜𝑚𝑚𝑜𝑛𝑎𝑙𝑖𝑡𝑦  ൌ   #௧ ௧௦ ௪  ௧ ௦ ௦௧
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    (6) 

 

  
Figure 3: Difference in Tail Clustering Between Naïve and Relative Commonality Scoring 
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4. Conclusion 
 

The utilization of relative commonality, Jenks Natural Breaks clustering, and the Elbow Method culminated in the 
development of a robust model, facilitating the determination of optimal groupings within the F-35 fleet. This innovative 
approach represents a marked improvement over Lockheed-Martin's previous "naive" organizational methodology. Notably, 
the model's adaptability ensures its continued relevance amidst evolving F-35 mission parameters and configurations, providing 
invaluable insights for strategic planning and resource allocation. 

Looking ahead, there exists an exciting avenue for further refinement and enhancement of the model by incorporating 
additional dimensions, such as the cost of parts or the failure rate of parts, through the application of K-means clustering. This 
expansion promises to deepen our understanding of fleet dynamics, enabling more nuanced decision-making and resource 
optimization. 

In expressing our gratitude, we extend heartfelt thanks to Dr. Durchholz for his invaluable contributions and sagacious 
guidance throughout this research endeavor. Furthermore, we extend our appreciation to Lt Col Lemay and Lt Col Ackerman 
for their invaluable subject matter expertise and insightful feedback, which have greatly enriched the quality and depth of our 
findings. Through collaborative efforts like these, we continue to push the boundaries of knowledge and innovation in aerospace 
management and decision science. 
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